/
J

AlphaVM for Windows
User Manual

Date: 28-Feb-2020
Author: Artem Alimarin
Version: 1.5.67

© 2020, EmuVM.

TABLE OF CONTENTS

1
2

Y olo] o1 PPN 3
191 1| o] o HO O PO RTO PR PPPTOURTROPRRINt 4
2.1 HOSt platform reqQUIrEMENTSoei i e e e s e e s s sbee e s sareeas 4
211 Requirements for AIPhaVIM-Pro ...ttt sttt ree e s ree e s s areeas 4
2.1.2 Requirements for Multiple INSLANCES.......uviiiiiieeiecee e e e 5
2.1.3 Requirements for running on @ hYPer-ViSOr........ccccueeiiciiieieciiee e e 5
2.2 ObtainiNg the SOTIWAIEeiiiiiee e e e e te e e e e ra e e e e eabee e e eeareeas 6
2.3 INSEAllatioN PrOCEAUIE. .. .uiii ittt e e e s e e e s s abe e e e s abeeesssbeeessnnreeas 6
2.4 UNINSTAIATION ...ttt st et sttt e e s et e sabeesabe e e sbbeesbeeeaeas 7
(@oT o) 7= (U = 4T o N PSPPI 7
3.1 SYSEEM CONTIGUIATION ..eiiiiiiiee ettt e e e e e et e e e e ebte e e eebteeeeesteeeesntaeaenanes 7
3.2 (0 e U @010 7= (U= 4o o FO PR RPNt 10
3.3 V1T oo o] a A ool a i T={U - 4 o] o TP 12
3.4 SCSI Controller ConfigUrationoccuieeiiciiii e e e s saaeeeeas 13
3.5 (D11 el g} =W =1 o o PP 13
3.5.1 Disk names in AlphaVM SRIM CONSOIE........coccuiiiiiciiee ettt e et e e e 17
3.5.2 Performance CoNSIAEratioNScoiiiiieiiiiiiece ettt st st 18
3.6 CDROM CONTIGUIATIONeviiieciieee ettt ettt e ettt e e e et e e e et e e e e ebt e e e e ebtaeesebteeeeenseaeassstenaesnnes 18
3.7 N O B =T o Tol el a1 F={UT =Y o o [PPSR 18
3.8 SCSI Pass-Through (aka Direct SCSI, aka Generic SCSI) Configuration.........c.ccceeveveeeiieeecveescieeenns 20
3.8.1 N O] R 1= 1= O PP PPPPTPPPPPTPPPPRt 22
3.8.2 ISCSI ABVICES ...ttt ettt sttt st e e s e s b e s e e sabe e e sareesabeesaneeesareeeneas 22
3.8.3 NON-SCSI TISKS ..ttt ettt st b e bttt e et e e sbe e s be e satesabeeabeebeenns 23
3.8.4 Booting from a SCSI Pass-Through devicecccoccueviieciiii ettt 23
3.9 Serial POrt CONFIGUIAtION .. .uuiii i e e et e e st e e e e tae e e e aseeeeas 23
3.10 Ethernet CoNfiGUIatioN.......ccuiii it e e e et e e e e abe e e e eabaee e enabeeas 25
3.10.1 Communication between the host and AlphaVMcccceiiiiiiiiiciiie e 28
3,11 VM I0gEINE CONFIGUIATIONviiiieiiie ettt ettt e e e et e e e e b e e e e e araeeeennraeeeeenseeas 28
3.12 VM launching CONfigUIatioN.......cc.uuiiiiiiie ettt e et e et e e e abe e e e eareee e e eareeas 30
3.13 Licensing iNfOrmMatioN......cocccuviii ittt e e et e e e e e e et e e e e e abe e e e e nbaeeeeenreeas 32

3.13.1 Configuring for @Valuationoeiiiiiie ittt e e eaa e e 34

3.13.2 Configuring with USB dongle on the local maching........cccccoeciieiicciiii e, 34

3.13.3 Configuring with USB dongle on a remote maching..........cccoecvveeieiieieiccieee e 34
3.14 Configuration of MUItIPlE INSTANCES......uuiiiiiiiii et e e e 34
N N U1 Y o T o] o T=T = o o PP 35
4.1 Running a VM from the GUI JaUNCREr......ccioiiiii it 35
4.1.1 Starting the @MUIGTION ..ccc.eeeeecee e e e e e e eeeeas 35
4.1.2 StoPPINg the @MUIALIONeviiiiee e e e e e raaaeeeean 35
4.2 Running a VM from command lINEc.ueeiiieiiiii ittt e e e e 35
4.3 RUNNING @ VIM @S @ SEIVICE «.ueueiiiiiiiiieeeiiiette et ettt e e e e sttt et e e e s e s s sbebee e e e e e s ssnnstbeeeeeeesssannnnes 36
I UL - LI - 1 0 o] L= PSPPIt 37
5.1 OS installation 0N @ NEW diSKcocueiiiiiiiiieiiieeee et 37
(SR |V 171 - 1 4o] o T T T TP U PP STPTP 37
6.1 Migration by COPYING diSKSueviiiiiiiecee e e e e 37
6.1.1 Copying disks USING @ LIV LINUX CDeeiiiiiiieiiiiiieecciiee e esiree e ecve e ssve e e svne e s esvae e e eseaeeeens 37
6.1.2 Migration of OpenVMS using backup /iMage.......cccecvevievieiiiciece e 38
6.1.3 Copying disks 0N OPENVIMISeuiiiiiiiiie ettt e e s sae e e s tae e e ssbae e e ssnbaeeeennsaeeenas 38
6.1.4 CopYing diSKS ON TIUBAvviieeiiiee ettt e e et ee et e et e e e et e e e eeatae e e esataee e e asaeeeenasaeeeennseneanan 39
6.2 Migration by reinstalling SOftWarE.......c..uii i et 39

1 Scope

This is a user manual for the AlphaVM line of products currently represented by AlphaVM-Pro,
AlphaVM-DC and AlphaVM-Basic running on Windows.

AlphaVM-Pro, the professional Alpha system emulator. It is meant to replace Alpha servers working in
data centers or industrial settings. It has high performance and reliability characteristics. Its
performance is on the level of the real Alpha systems. AlphaVM-Pro is capable of replacing machines of
DS10, DS20, ES40, DS25, ES45 class of Alpha systems.

AlphaVM-DC is a variant of AlphaVM-Pro for data centers. The main difference is in the licensing.
AlphaVM-DC license binds to the hypervisor appliance virtual hardware rather than to a USB dongle.

AlphaVM-Basic is a basic emulator that supports 1 basic CPU and 1GB RAM.

2 Installation

2.1 Host platform requirements

2.1.1 Requirements for AlphaVM-Pro
The general requirements are as follows:

The operating system must be Windows x64 6.0 or higher:
Windows Server 2008,
Windows Server 2008R2
Windows Server 2012,
Windows Server 2012R2
Windows Server 2016
Windows Server 2019
Windows Vista,
Windows 7,

Windows 8.

Windows 10.

o O O O 0O 0O O O O

We recommend a server operating system Windows Server 2008 or 2012. We do not
recommend Vista.

The host system must have a CPU, which supports CMPXCHG16B, SSE3 and SSSE3 instruction set
features. These features are not available only on very old CPUs.
The host CPU performance has a direct influence on the emulated system performance. The
actual host CPU type depends on your performance requirements. We recommend fast new
Intel CPUs (at least 3GHz). Here are some of them
E3-1240v3 (4 cores, 3.4GHz),
E3-1270v3 (4 cores 3.5GHz),
E3-1280v3 (4 cores, 3.6GHz),
E5-2643v2 (6 cores, 3.5GHz),
o E5-2637v2 (4 cores, 3.5GHz, the host system can have 1 or 2 CPUs).
HP ProLiant servers can be equipped with these CPUs.

O O O O

The product requires a reserved host CPU core for each emulated CPU. This means that a single
CPU emulator requires at least a dual-core host system. A dual CPU emulator requires a 3 core
system. We advise a double amount of cores with respect to the emulated CPUs.

The host memory requirement depends on the emulated Alpha memory size and other
emulator settings. The general requirement is as follows: if the emulated system has N GB
memory, than the host system must have at least N + 2GB memory. Besides the emulated
memory size, the following factors may influence the required amount: number of CPUs,
number of disks, caching settings for disks. We advise at least N + 4GB.

JIT CPU versions require more memory and CPU resources than the basic CPU.

e The product is supported on virtual platforms: Hyper-V, VMware, Proxmox VE. The product may
also run on other platforms like Virtual Box. However, running on a hyper-visor means extra
level of virtualization, which can cause performance degradation. This document does not cover
in detail the configuration specifics for these platforms. Some details can be found on our
website.

o Emulated Ethernet controllers are mapped to host Ethernet controllers (NICs). Note that
mapping to Wireless Ethernet controllers does not always work. It is advisable to have a
separate host NIC for each emulated NIC.

The actual requirements are very specific for a given configuration and workload. Contact our support to
get an advice about hardware required for your configuration.

2.1.2 Requirements for multiple instances
It is possible to run multiple instances of the emulator on the same host machine. The requirements in
this case just add up.

For instance, if you run two similar virtual machines on the same host, the requirements are double of
the single instance requirements.

2.1.3 Requirements for running on a hyper-visor.
AlphaVM is an application that runs on the host OS. The host OS in turn can run on a physical hardware
or on virtual hardware provided by VMware, Hyper-V, Proxmx VE, etc.

The requirements for the hosting VM are the same as for a hardware host requirements.
It is recommended to use a dedicated host VM NIC for each AlphVM NIC.

When running on a hypervisor, the hypervisor controls how the host hardware system resources are
assigned to the VM that host AlphaVM. It is important that AlphaVM gets enough resources to show
adequate performance. AlphaVM performance will suffer on an overcommitted hypervisor.

The AlphaVM CPU emulator for each Alpha CPU has a single main thread that implements the main CPU
workflow. This thread either interprets Alpha instructions read from memory or executes native code
created by the just-in-time compiler for the Alpha instruction stream. Alpha CPU has more auxiliary
threads that, for instance, run the just-in-time compiler. However, the main CPU workload is inherently
single threaded, because the CPU actions are essentially sequential, although in real CPU some fine
grained parallelism could occur due to pipelining. In AlphaVM the instructions are executed sequentially.

The single-threaded nature of Alpha CPU means that a single Alpha CPU is not scalable and it needs
100% of the host CPU to execute efficiently. If Alpha CPU gets, for instance, only 50% of the host CPU
power, Alpha CPU performance will be about 50% of what it could be.

Alpha CPU constantly keeps executing the Alpha instruction stream, which explains 100% host CPU
resource usage. The only reason why Alpha CPU can stop using 100% of the host CPU resources is the

idle release — a feature that allows to release the host CPU when the guest OS (OpenVMS or Tru64) is
idle. This is achieved by the guest OS idle loop detection feature.

Naturally, different Alpha CPUs can run in parallel on different host cores.

It is recommended for the VM hosting AlphaVM to be given enough resources to ensure that AlphaVM
always gets 100% of the host CPU and enough memory backup.

If AlphaVM performance is important, we recommend running on a physical server rather than on a
hypervisor.

2.2 Obtaining the software
Please contact us per e-mail

mailto://sales@emuvm.nl

AlphaVM-Pro requires a USB license key to run. The key and the software will be sent to you when you
purchase the software.

AlphaVM-DC requires a software key to run. We generate the license key based on the information
about hypervisor appliance virtual hardware provided by our tool.

The software license price depends on the virtual Alpha system configuration. You can request a quote
on the page http://emuvm.com/alphavm_pro_quote.php.

2.3 Installation procedure
The product is distributed in the form of Windows installer package. To install the emulator, run the
installer. Then just follow the installation procedure.

The installer installs the following third party components needed for AlphaVM operation.

e .NET Framework. The installer will check and install the .NET Framework 4. It is required for
proper operation of the user interface. The installer does not contain the full redistributable
package of the framework. Instead, it will try to perform a network download and installation. If
needed, you can install the framework before the installation.

e PuUTTY terminal emulator. PUTTY terminal emulator is used to connect to the emulated Alpha
serial console. The user can use another terminal emulator. However, we recommend installing
PUTTY anyway as a fallback. The putty executable will be put in the same directory where the
emulator is installed.

o WinPcap Ethernet packet driver. WinPcap is used to pass packets between the emulator and
the real network. This is widely used driver certified to work in Windows operating systems. You
may want to disable installation of WinPcap if it is already installed. This is especially useful if
you want to keep another version of software.

For AlphaVM-Pro the installer installs the following Windows services:

e EmuVMSrv. This service is needed to run the virtual machine automatically. It’s executable is
emuvmsrv.exe

e EmuVMlLicense. This service implements the licensing mechanism. The executable is
keylok_service.exe.

2.4 Uninstallation
To uninstall the emulator use the "uninstall" icon provided in the program menu reachable from the
Start menu or launch the un-installation otherwise.

3 Configuration
Before you can run you virtual Alpha system, it has to be created and configured. The VM configuration
specifies properties of the emulated system: the number of CPUs, the memory size etc.

The emulator is configured by means of the elements of the user interface. The configuration tree
allows selecting objects to configure. The property grid on the right side allows specifying properties of
the selected object.

The configuration can be loaded and saved via the file menu or via the toolbar.

3.1 System configuration
System configuration screen enables configuration of the emulated Alpha system.

File Cenfigure Emulation

......... Memonry
......... " com 1.4ty
......... N comZtty

Configuration locaded

J AlphaVM Launcher - foo_1_5.emu

Tools Help
I :: r-g.-__ ,l - a .
K@
o=l |
v System
Mumber of CPLs

Emulated System Type
Emulated System Type I1d
Reported System Type
Reported System Type I1d
S5

v System, Advanced Settings

2

AlphaServer ES40/833
esdl 833

default

default

AlphayM-00000001

Imterval Clock Frequency 1000
True
Adjust Clock Resalution Thue
Cycle Counter Frequency 0

Clock Busy Wait

lUse busy looping to achieve precise intervals in the interval clock.

Configuration properties:

e SystemType specifies the type of the emulated system. Currently the following systems are

supported:

o AlphaServer DS10 466MHz, model 1839 (ds10_466)
AlphaServer DS10 616MHz, model 1970 (ds10_616)
AlphaServer DS10L 466MHz, model 1961 (ds10l_466)
AlphaServer DS10L 616MHz, model 1962 (ds10l_466)
AlphaServer DS20 500MHz, models 1839, 1920 (ds20_500)
AlphaServer DS20E 500MHz, models 1840, 1921 (ds20e_500)
AlphaServer DS20E 667MHz, models 1939, 1940 (ds20e_667)
AlphaServer DS20E 833MHz, models 1982, 1983 (ds20e_833)
AlphaServer DS20L 833MHz, model 2006 (ds20l_833)
AlphaServer ES40 500MHz, models 1813 -1816 (es40_500)
AlphaServer ES40 500MHz, models 1817 -1820 (es40_667)

0 0 0O 0O 0 0O 0o O O

AlphaServer ES40 833MHz, models 1984 — 1987 (es40_833)
AlphaStation XP900 466MHz, model 1879 (xp900_466)
AlphaStation XP900 500MHz, model 1821 (xp1000_500)
AlphaStation XP900 667MHz, model 1822 (xp1000_667)
o AlphaStation XP900 750MHz, model 1922 (xp1000_750)
SystemTypeld shows an internal system type identifier for SystemType. Launcher passes this

O O O O

identifier to the VM to select a system to emulate.

ReportedSystemType specifies the type of the system reported to the OS informational routines
(like licensing). This option allows a system pretending to be another system, which is not
actually implemented. By default, the same system information is returned as specified by
SystemType. The value default instructs the system to use the same type as the specified by
type. See values in the drop down menu of the Launcher. Other systems can be added upon
request.

ReportedSystemTypeld shows an internal system type identifier for ReportedSystemType.
Launcher passes this identifier to the VM to select a system.

NumCPUs specifies the number of CPUs in the emulated system. Please note that on a 32-bit
Windows multi-processor configuration is not supported. The emulator reserves one core of the
host system for each emulated CPU. The emulator needs at least one core for bookkeeping and
|0 processes. Thus, you need a dual core system to run with one emulated CPU, and at least 3-
cores to run a dual CPU configuration. The maximal number of CPUs depends on the emulated
system and on the product license. The default number of CPUs is 1.

SSN specifies the system serial number of the emulated system. SSN is often used by third party
software to identify the hardware for licensing purposes. This value is a string of max 16
characters long.

Interval Clock Frequency specifies the interrupt clock frequency in Hz. Interrupt clock frequency
specifies the number of timer interrupts per second. Please do not change this value unless you
know what you are doing. This value can affect stability of the system. The standard Alpha
frequency is 1000 interrupts/second. However, this frequency can be changed for performance
tuning reasons. It is communicated to the operating system via HWRPB. OpenVMS and Tru64
adjust to this value. For performance reasons, it could be better to set this value to 100.
Currently Linux does not seem to work correctly with non-standard values.

Busy Clock Wait specifies whether to use a busy loop to make the clock intervals precise. The
default value is True, which corresponds to the behavior of the product prior to introduction of
this option. This option is introduced to prevent excessive CPU usage by the timer when the host
is not capable of providing reliable intervals. Disabling busy loops can be useful when running on
a host with scarce CPU resources or on a virtual host that is poorly scheduled.

Adjust Clock Resolution specifies whether AlphaVM tries to change Windows clock resolution to
have a better response time on Windows level. By default, it is true.

Cycle Counter Frequency can be used to override the default cycle counter frequency defined
by the emulated system. The default value for this option is zero, which means that the default
clock of the emulated system is used. This option does not influence the real performance of the

VM. However, this option can be useful when an application in the guest system uses a timing
calibration algorithm based on the cycle counter frequency.

3.2 CPU Configuration
CPU configuration node is used to configure all CPUs in the system. All CPUs in the system will get the
same properties.

t.j AlphaVM Launcher - foo_1_5.emu - O X

File Configure Emulation Tools Help

| EHe- > " 2@

EM System EEE ﬁ‘|' | =
+ Configuration
......... B = Server jit3
Statitics Period 300
--------- l Memory v Emulation
S PAL TBCHK False
el % com1Aty0 Suppress Unaligned False
m Pedantic IEEE FP Traps True
el % com2dty1 Pedartic SFoat Fnd True
o v JIT
......... _ qlal Async JIT True
S Max JIT Pages 2043
......... ﬂ ethl) Code Size 256
[a) Idle True
......... [diskO Experimental Features Falze
F} IMB Mode 0
--------- \?f cdrom{ IME an REI False
. : Host FP Traps True
......... Eﬂ Logging Mum Threads o
. CGueue Lock Spin 0
--------- i_‘:;. Launch Cueue Lock Block False
- Queue Full Spin 0
--------- EQ\L% Licensing Queue Full Block False
Server
The CPU server; specifies the implementation of the CPU. Basic CPU iz an
interpreter. Cther CPLUs are based on a JIT compiler.

Configuration loaded

Configuration properties:

e Server specifies a CPU server to be used. Currently there are the following servers available:
o Basic server is a server with a basic performance.

o JIT1is the server with the performance on the level of fast EV4. It is based on Just-in-
time compilation technology (JIT), which translates the Alpha code to a faster native
code.

o JIT2 is a server with the performance on the level of high-end EV5 — low-end EV6 Alpha
CPUs.

o JIT3 is the fastest server with the performance of high-end EV6 — EV7 Alpha CPUs. Its
performance is approximately double of JIT2.

Statistics Period specifies the period between the CPU statistics dumps. For the workload
profiling purposes, the CPU can dump statistics over a specific period. The default value is zero,
which means that the dumps are disabled. Do not turn this option on for a production system.
TBCHK specifies whether PAL TBCHK instruction is implemented. By default, it is not
implemented. Do not change this default unless you know what you do.

Suppress Unaligned specifies whether unaligned trap is to be generated when applicable; true
by default. For some workloads that generate a lot of unaligned accesses it could be desirable to
disable the unaligned access traps to increase performance. In that case AlphaVM performs
unaligned access fixup in the similar way to the unaligned trap handler of OpenVMS or Tru64.
Pedantic IEEE FP Traps specifies whether IEEE FP trapping is implemented exactly according to
the Alpha architecture specification. It is by default true. When false, some more performance
optimizations are possible. When disabled, it the inconsistency with Alpha architecture affects
only trapping cases.

Pedantic SFloat Rnd specifies whether rounding in IEEE single-precision floating point
computations is implemented exactly according to the Alpha architecture specification. It is true
by default. When disabled, some performance optimizations are enabled.

Queue Lock Retries specifies the number of retries when trying to acquire the queue lock in the
OpenVMS interlocked queue PALcode instructions. The default value is zero, which means that
the system chooses the value.

Queue Lock Spins specifies the number of spins when trying to lock a queue in the OpenVMS
interlocked queue PALcode instructions. The default value is zero, which means that the system
chooses the value.

Async JIT specifies whether JIT compilation process is synchronous with respect to the CPU or
asynchronous. By default, it is asynchronous. The synchronous mode is needed mostly for
debugging.

Experimental Features enables some JIT optimizations that are have not yet proven stable.
These features are available on the field test basis and are not subject to the product support.
Do not enable the experimental features in production environment.

Idle when enabled, instructs the emulator to release the host CPU when the guest OS is idle.
Most version of OpenVMS and Tru64 5.1b are currently supported. Note that this feature may
negatively affect the performance of some 10-bound loads. The idle feature is available only in
JIT CPUs.

IMB Mode - this is an advanced feature for performance tuning. Do not change it unless advised
to do so by EmuVM.

e IMB on REI - this is an obsolete feature that enables automatic instruction memory barrier on
PAL REI. Do not enable it.

o Max JIT Pages specifies the maximal number of JIT pages that can be simultaneously active in
the system. Each JIT page corresponds to a single page of Alpha code. Please do not change
unless you know what you are doing. Lower values can lead to performance degradation, while
higher values can cause excessive memory usage.

o Code Size specifies the default size in KB for memory allocation of code chunks. The default is
256k. Too big chunks can cause excessive memory consumption. Too small chunks can degrade
the system performance due to frequent allocation. The advised values are in range 128 - 1024.
The value is rounded up to 64k.

e Host FP Traps specified whether the FP traps are implemented using the host FP traps or by
checking conditions. It is false by default, which corresponds to the old behavior. Setting it to
true can yield a drastic performance improvement for some FP intensive workloads.

e Num Threads specified the number of just-in-time compiler threads used to compile the Alpha
instruction stream into native code. This number specifies the number of threads per AlphaVM
CPU, rather than in total. The default is zero, which means that AlphaVM selects the appropriate
value automatically. Currently AlphaVM sets it to one. The value currently could be 0, 1, 2 or 4.
The other values are converted to one of these values. Setting more than one thread can
improve some workloads that cause a lot of JIT compilation. The host machine must have
enough CPU power to benefit from additional threads.

e Queue Lock Spin is for performance tuning by EmuVM engineers. It specified the number of
attempts the CPU tries to acquire the JIT queue lock. Actually, Queue Lock Spin + 1 attempts
are performed. The default value is zero, which means that only a single attempt is made. When
all attempts are exhausted, the action depends on Queue Lock Block. The CPU is either blocked
until it can acquire the lock or the request is dropped.

e Queue Lock Block is for performance tuning by EmuVM engineers. Specifies whether the CPU is
blocked or the request is dropped when Queue Lock Spin attempts to lock the JIT queue are
exhausted. The default is not to block. Blocking the CPU can lead to performance problems.

e Queue Full Spin is for performance tuning by EmuVM engineers. It specified the number of
attempts the CPU tries to push a JIT request onto the JIT queue. Actually, Queue Full Spin + 1
attempts are performed. The default value is zero, which means that only a single attempt is
made. When all attempts are exhausted, the action depends on Queue Full Block. The CPU is
either blocked until the request can be pushed or the request is dropped.

e Queue Full Block is for performance tuning by EmuVM engineers. Specifies whether the CPU is
blocked or the request is dropped when Queue Full Spin attempts to lock the JIT queue are
exhausted. The default is not to block. Blocking the CPU can lead to performance problems.

3.3 Memory configuration
Configuration properties:

o Memory Size specifies the RAM size in megabytes of the emulated system. The amount of
memory you can use here depends on the amount of memory on your host computer. Itis

recommended to have at least 2GB of host memory. Maximal memory size depends on the
emulated system and on the product licensing. The default size is 128M.

e Lock specifies whether to lock the guest memory in the host memory. Locking means that the
pages are not unloaded from the memory by swapping. Locking can degrade performance,
because other pages will be offloaded. This is an advanced option added for experimentation
purposes. Locking is by default off. Note that you can only lock pages when the working set is
large enough. If the VM fails to lock pages and logs an error, it continues without locking.

3.4 SCSI Controller Configuration

SCSI controllers can be added using the “Configure” menu and removed using a menu that appears on a
right-click. The controllers have consecutive fixed names: gla0, glal, ... Only the last controller can be
removed, which is to preserve this naming sequence.

The number of plugged controllers determines the number of SCSI buses available. You can select a SCSI
bus in the SCSI device configuration using the bus number option.

Some Alpha systems have one or two built in SCSI controllers. These controllers will be present in the
resulting system even if they are not present in the Launcher GUI configuration. Since the number of
available buses in the GUI depends on the number of controllers available in the GUI, the controllers
must be present to make the buses available.

The configuration of built-in controllers is given by gla0 and glal. If the system does not have built-in
controllers, then gla0 and glal cause controllers to be loaded in the available system slots.

Configuration properties:

e The option SCSI ID specifies the SCSI ID of the controller. Values are 0 .. 15. The default value is
7.

o The option Slot specifies the PCl slot to which the adapter is plugged. The default behavior is
automatic; thus, you do not have to specify this option or know about slots. The automatic
behavior covers most cases with OpenVMS. Tru64, however, is very sensitive to changes in the
hardware configuration. When you copy your disk images from the real system, it can be
required to specify the slots in such a way to reflect the configuration of the real. However, we
advise to reconfigure Tru64 and rebuild the kernel rather than playing with the slots. The
number of slots depends on the actual emulated system. The mapping of the slots to PCl hoses
and IDSELs also depends on the system.

3.5 Disk configuration

New disks can be added using the Configuration menu. A disk can be removed or renamed by means of
a context sensitive menu available on right-click on the device in the configuration tree. Note that the
device name has no meaning for the system; it is only used for convenience. For instance, you can
choose this name to be

o the disk label of the disk like mydatadisk, or

e the disk name in the SRM console like dka100, or
e the disk device name in your guest OS, like rz12.

The disk image must exist before you can attach it to the emulator. A fresh disk image can be created by
means of the Make Disk tool available in the Tools menu. The Make Disk tool just creates an empty disk
image file. It does not attach it to the emulator. Therefore, you have to attach it yourself after creation.

The disk configuration table enables configuration of the emulated disk properties.

File

I EH - P

Configure Emulation Tools Help

@ﬂ System

l Memary

1 % coml Jity0

secrren-

1 =l com?2/ttyT

secrrren-

_ qlaﬂ
ﬁ eth0

S disko

P
‘:;3/1 cdrom0

i diskt

[Losaing
5 Launch

E“\% Licensing

=|A
= Z

Disk Server
Caching

Image file
ReadOnly
Removable
Server

Shared

Write Through
Emulation
Async

SCSI Address
SCSIBus D
SCSILun

SCSI TargetlD
SCSI Device Id
Product
Revision
Vendor

Vendor Specific
SCSI Emulation
PRMode
SCSIVPD
Device EU-64
Device SCSI Name
Device VID
DeviceNAA
DeviceSN

Part EUI-G64
Part NAA

Part SCSI Name
VPD

Tracing
TraceCmd
TracelQ
TraceSense

False
CATest\vms/31test]._dd
False

False

default

False

False

True
0

0
0

Async
Asynchronous 10.

Configuration loaded

Configuration properties:

Server specifies how the disk is served. The default value is default, which means that the

system determines how to server the disk. The servers are:

o basic—disk server based on a basic I0.
o cport —disk server based on asynchronous 10 that uses Windows completion ports.

o mapped — disk server based on a memory-mapped file 10. This server can only be used

with regular files.
The default value normally maps to cport. In some cases it can map to basic.
Image specifies a file name of the disk image file used to store disk data. An empty disk image
can be created with “Tools/Make disk”. Please note that creation of a disk image does not
connect it to the system. After creation, you still need to specify it in the Image property of one
of the disks. The default value is empty, which means that there is no disk.
SCSI ID specifies the SCSI target ID of the disk. The SCSI ID can have values 0 .. 6, 8 - 15. SCSI ID 7
is reserved for the SCSI controller. All SCSI devices in the configuration must have unique SCSI
IDs. The default value is the disk number, which ensures that the disks have unique IDs.
SCSI BUS specifies a SCSI bus to which the device is connected. The buses are numbered from
zero. The number of SCSI buses depends on the amount and type of the SCSI controllers in the
system. The number of SCSI buses depends on the amount and type of the SCSI controllers in
the system. If you see and empty drop down box, it can mean that you have no SCSI controllers
loaded. The default value is zero.
SCSI LUN specifies SCSI logical unit of the disk device. The value can be 0..7. SCSI allows several
logical devices to be associated with a single bus device. The default is 0.
Async enables asynchronous operation of the disk with respect to the SCSI controller. It is by
default True. It can make sense to turn it off for very fast memory-mapped 10, when extra
context switches may cause extra overhead.
Caching specifies whether caching of the disk image file is enabled on the host operating system
level. The default value is off. In some situations, caching can improve |0 performance.
However, we noticed that disk 10 intensive usage with caching enabled leads Windows to use
most memory for disk caching, which results in excessive page faults, system trashing, and as
the result CPU sanity checks on OpenVMS SMP configurations. There are complicated inter-
decencies of this setting with the amount of available memory and working set settings.
WriteThrough specifies whether write-through mode is enabled on the host operating system
level. The default value is off. See the comment on the option Caching.
Shared specifies whether the VM opens the disk image in shared mode. Normally it should be
opened in exclusive mode to prevent multiple usage of the same file. The default value is false
(exclusive mode), which guarantees that the disk can be modified only by the emulator.
ReadOnly specifies whether the emulated disk is read-only. In this case the VM opens the image
in read-only mode. The default value is false (writable)
Removable specifies emulation of a removable disk. The default value is no. This option only
makes sense for an image file. Essentially, if the image file cannot be open, the “no medium”
status is returned instead of “offline”. The file is closed upon the SCSI STOP command with LOEJ
bit set. Unfortunately OpenVMS mount /unload does not set LOEJ bit. The following commands
can be used on OpenVMS to force unload of a disk (or CDROM):

$ rzt:==sysetc:rztools alpha

$ rzt dkalee: /stop
When such disk is mounted, AlphaVM tries to open the file.

e Vendor, Product, Revision specify the emulated disk attributes. When these attributes are
unset, the AlphaVM provides some default attributes.

e Vendor Specific specifies the vendor specific field in the VPD field.

o PRMode specifies how the SCSI persistent reservations are implemented.

o None — means that persistent reservations are not implemented and the disk returns
the status “invalid command” for these SCSI commands.

o Dummy — means that the device implements the commands, but no actual protection of
reservations is done. The implementation is dummy. This option can be used when
there is just one node working with the disk. It is useful for a single node Tru64 cluster.

o Real —the system implements persistent reservations.

Currently only none is supported.

e VPD enables SCSI vital product data reporting. The default is currently false.

e Device EUI-64 specifies the device indetifier in the EUI-64 form (8,12 or 16 bytes). This form is
provided by some SCSI or FibreChannel disk arrays. Example: 0000-0E11-0012-5205. It
corresponds to Tru64 SCSI-WWID:0c000008:0000-0e11-0012-5205.

e Device SCSI name specifies the device identifier in the SCSI name form.

e Device VID specifies the device identifier (VPD page 83). Example: DEVICE-VID-EMUVM-0001. It
corresponds in Tru64 to something like SCSI-WWID:03100025:"RZ26L DEVICE-VID-
EMUVM-0001".

o Device NAA specifies the device identifier in the NAA form (8 or 6 bytes). Example: 6000-1fel-
0010-8d40-0001-0460-7270-00ca. This corresponds to Tru64: SCSI-WWID:01000010:6000-1fe1-
0010-8d40-0001-0460-7270-00ca.

e Device SN specifies the device serial number (VPD page 80): Example: DEVICE-SN-EMUVM-0001.
In Trub4 it corresponds to something like SCSI-WWID:0410002c:"DEC RZ26L DEVICE-SN-
EMUVM-0001". The device serial number can also be used to emulate a HSZ unit. To emulate
HSZ the vendor must be DEC and the product must start with HSZ. In this case the device SN is a
concatenated SNs of this HSZ and the other HSZ in the dual set (20 characters together, 10 for
each SN). Thus, ZG41000118ZG41000119 corresponds to Tru64 SCSI-WWID:0910003c:"DEC
HSZ70 ZG410001182G41000119:d00t00003100000"

o Port EUI-64 specifies the device port EUI-64 identifier.

e Port NAA specifies the port NAA identifier.

e Port SCSI Name specifies the port name in the SCSI form.

e TraceCmd — enables tracing of SCSI commands

o TraceSense — enables tracing of SCSI sense information. SCSI sense information is normally send
when an error or a non-standard situation occurs.

o TracelO — enabled tracing on the level of disk server.

3.5.1 Disk names in AlphaVM SRM console
The SRM or VMS disk device name, e.g. dkb1201, is formed as follows:
- The First two letters dk designate SCSI disk

- The third letter designate the SCSI controller number a=0, b =1, ...
- The number n defines SCSI id and logical unit: id=n/100, lun = n % 100

Thus dkb101 means that the disk is connected to the bus of the second SCSI controller (bus=1), SCSI ID
is 12, SCSI Lun is 1.

3.5.2 Performance considerations
For most workloads it is recommended to use asynchronous IO with caching off and write through off.

Caching causes performance degradation for some operations like large file copy. In this case it causes
excessive swapping at the host OS level.

Caching can be beneficial when the disk is relatively small comparing to the host RAM.
Disk 10 performance depends on multiple factors. Some of them are given below.

e AlphaVM process working set size. The working set limits can be set in the Launch configuration
section.

e Host system file cache size. It can be adjusted by the emulator at startup. See the Launch
configuration section.

e Whether or not Windows has a paging file.

3.6 CDROM configuration
CDROM configuration is similar to disk configuration.

New CDROM can be added to the system using the Add CDROM button. It can be removed or renamed
by means of a context sensitive menu available on right-click on the device in the configuration tree.

The image property here normally specifies a CDROM image file (ISO image). However, it can also be a
physical CDROM name like \\.\CdromO.

CDROM does not have write-related properties. ISO images are always opened in read-only mode.
To programmatically eject CD on OpenVMS use the following commands:

$ rzt:==sysetc:rztools_alpha

$ rzt dkad00: /stop
On Tru64:

scu —f /dev/rdisk/cdromOc eject

3.7 SCSI Tape configuration

AlphaVM supports virtual (logical) SCSI tapes. The tape is emulated using tape image file. A virtual tape
drive can be added from the configuration menu. As with other SCSI devices, the SCSI path should be
unique.

file://///./Cdrom0

Currently the virtual tape drive has no button in the Ul to load/unload the medium. On OpenVMS please

use rztools:
$ rzt:==sysetc:rztools_alpha
Send load command to the tape:
$ rzt mka6oo: /start
Send unload command to the tape:
$ rzt mka6eeo: /stop
On Tru64 the tape can be operated with:

scu -f /dev/rmtOh

I"“‘ AlphaVM Launcher - foo.em

File Configure Emulation Tools Help

| EHp- > u 2@

= E System ; \l | _'—-I
4 Emulation
""""" n cPU Async True
4 SCSI Emulation
SCSIBus D 0
SCSlLun 0
SCSI TargetID 0
4 Tape image
. AutoCreate True
""""" _ glal AutoLoad True
= [EFE TN cTestoo tap
""""" h qlal InitialLoad True
_________ ﬂ eth0 MaxSize 0
— ReadOnly False
el diskD Shared False
—_ 4 Tracing
--------- @} cdrom TraceCmd False
ol TracelO False
""""" m tapel TraceSense False
Fﬁ Logging T Image file
)’1 Launch The emulated tape image file
@ -

Configuration loaded

Configuration properties:

o Image file specifies a file name of the tape image file used to store data. An empty tape image
can be created by creating an empty file. The default value is empty, which means that there is

no medium in the tape drive.

e SCSI ID specifies the SCSI target ID of the tape. The SCSI ID can have values 0 .. 6, 8 - 15. SCSI ID 7
is reserved for the SCSI controller. All SCSI devices in the configuration must have unique SCSI
IDs. The default value is the disk number, which ensures that the disks have unique IDs.

e SCSI BUS specifies a SCSI bus to which the device is connected. The buses are numbered from
zero. The number of SCSI buses depends on the amount and type of the SCSI controllers in the
system. If you see and empty drop down box, it can mean that you have no SCSI controllers
loaded. The default value is zero.

e SCSI LUN specifies SCSI logical unit of the disk device. The value can be 0..7. SCSI allows several
logical devices to be associated with a single bus device. The default is 0.

e Async enables asynchronous operation of the tape with respect to the SCSI controller. Itis by
default yes. Tape it is a very slow device, which can block 10 when in synchronous mode. This
option is provided for debugging.

o Initial Load specifies whether the tape medium is loaded in the drive when the emulator starts.
This is applicable only if the tape image file exists. If the image does not exist, it is considered
that there is no medium in the drive.

e Autoload specified with the tape is automatically loaded on access. This means that the tape
file is opened on access. When this option is off, a special load command must be issued to load
the tape (see rztools commands earlier in this section). When auto-load is on, you do not need
those commands. Note that multi-volume backups do not work with auto-load, because you do
not have a chance to swap the media: the tape will automatically reopen the same file when it is
done with the first volume.

e AutoCreate specifies whether an empty tape file is created, if it does not exist. It is convenient
because you do not have to create empty tape files yourself.

e Max Size specifies the maximal size of the tape image file. This parameter can be used to create
a multi-volume tape backup. The default value is zero, which means no limit.

e ReadOnly can be used to protect the tape from writing.

o Shared indicates the shared open mode of the tape drive.

3.8 SCSI Pass-Through (aka Direct SCSI, aka Generic SCSI) Configuration
AlphaVM-Pro is capable of accessing the host system SCSI devices by means of so called SCSI Pass
Through mechanism. SCSI commands and data are passed between the guest and the hosts systems “as
is”. This feature allows to access devices that are not available via the emulation layer. Examples of
where the SCSI Pass Through is useful include access to the following devices:

e SCSl tape, which is not available otherwise
e SCSI disk, which can be taken from the real system and attached to the emulator to simplify

migration
e ATAPI CDROM, which works as expected
e iSCSI disks

e SCSI devices of other types

Although the intention of SCSI Pass Through mechanism is to pass commands and data “as is”, some
options are available to adjust commands and data in such a way that some useful devices are not
rejected by OpenVMS or Tru64.

a B
,;'J AlphaV¥M Launcher - foo.em 1=k

File Configure Emulation Tools Help

‘ - @Syst&m ﬁl|_|
4 Emulation
......... n CPU Async True
_________ l Memory ConvertCDB False
- EmulateMP1 False
.......... =y SCSIVersion 0
*“"" comi/yo SuppressVFD False
--------- 4 com2/ity1 Timeout 60
— 4 Host Device Mapping
""""" B a-0
=1 Host SCSIID 0
""""" i, emo Host SCSI Lun 0
_________ .': "'I diskD Host SCSI Path 0
= Host SCSIPort 0
......... @/ cdrom 4 SCSI Emulation
g SCSIBus D]
......... '2“ scsipiﬂ SCS| Lun i}
) SCS5l TargetID 0
......... E‘j Logging e
_________ h\ Launch TraceCmd False
a2 TracelQ False
......... E:% Licensing TraceSense False
Device
Windows device

Configuration loaded

Configuration properties:

e SCSI ID specifies the SCSI target ID of the disk. The SCSI ID can have values 0 .. 6, 8 - 15. SCSI ID 7
is reserved for the SCSI controller. All SCSI devices in the configuration must have unique SCSI
IDs. The default value is the disk number, which ensures that the disks have unique IDs.

e SCSI BUS specifies a SCSI bus to which the device is connected. The buses are numbered from
zero. The number of SCSI buses depends on the amount and type of the SCSI controllers in the
system. The number of SCSI buses depends on the amount and type of the SCSI controllers in
the system. If you see and empty drop down box, it can mean that you have no SCSI controllers
loaded. The default value is zero.

e SCSI LUN specifies SCSI logical unit of the disk device. The value can be 0..7. SCSI allows several
logical devices to be associated with a single bus device. The default is 0.

e Async enables asynchronous operation of the unit with respect to the SCSI controller. It is by
default False. A slow device in a synchronous mode can block 10. This option is provided for
debugging.

e Device specifies the Windows device used to access by the SCSI Pass Through. It can be for
instance “\\.\Tape0” or “\\.\PhysicalDrive2”. If the value is empty, the following properties are
used to identify the device: Host SCSI Port, Host SCSI Path, Host SCSI Id, Host SCSI Lun. These
parameters are used to access the device through \\.\ScsiX. The default value is empty.

e Host SCSI Port, Host SCSI Path, Host SCSI Id, Host SCSI Lun specify the SCSI path of the host
device. These options are ignored when the Device is specified. Their default values are all zero.

e Suppress VPD enables suppression of Vital Product Data in the SCSI Inquiry.

e Emulate MP1 enables emulation of SCSI Mode Page 1 (read-write error recovery) in case the
device does not provide it.

e ConvertCDB enables conversion of 6-byte SCSI commands to 10-byte SCSI commands. This
mode is can be used to access some ATAPI devices. The default value is False.

e Trace Command enables logging of commands with sense data. Normally sense data is
associated with errors or non-standard situations, so you may wish to enable it to see if
something is going wrong. The default value is False.

e Trace Sense enables logging of all SCSI commands. This option is for debugging. The default
value is False.

3.8.1 SCSITapes
One of the typical uses of the SCSI Pass Through is to access a physical SCSI tape attached to the host.

The tape device name in Windows has the form of \\.\Tape0, which should be used to configure the
tape in the emulator.

Alternatively, if the tape device is disabled in the device manager, one can access it using Host SCSI Port,
Host SCSI Path, Host SCSI Id, Host SCSI Lun. In that case the Device option should be empty.

3.8.2 iSCSI devices
The SCSI Pass Through can be used with devices available via iSCSI. This means that the iSCSl initiator
must be configured for the device in Windows.

iSCSI target can naturally be on the same host or on a different host.
Linux iSCSI target is compatible with the emulator. It can be directly used.

Windows 2012 SCSI target can require Suppress VPD and Emulate MP1 to be enabled.

3.8.3 Non-SCSI disks

Windows converts SCSI commands to ATAPI device commands, in such a way that SCSI Pass Through
can be used to access ATAPI devices. For instance, an ATAPI CDROM drive or a USB stick can be accessed
this way.

Note that not all devices respond in a way accepted by OpenVMS or Tru64.

3.8.4 Booting from a SCSI Pass-Through device

Alpha can boot only from a device that supports the block size of 512 bytes. Most CDROM drivers have
block size of 2048. However, Alpha CDROM drives are able to switch the logical block size to 512, which
enables Alpha booting from these devices.

If your device is not capable of switching to logical block size of 512, AlphaVM will not be able to boot
from it.

3.9 Serial port configuration

Serial port configuration pane enables specification of how the port is connected. Currently the port
connected only to a virtual terminal. Virtual terminal can be connected to a terminal emulator. We
provide a free terminal emulator PuTTY (written by Simon Tatham), which is widely used. This is the
default terminal emulator used by AlphaVM. You can choose another terminal emulator and configure it
here.

-
J AlphaVM Launcher - foo.em i=h

File Configure Emulation Tools Help

| EGHs > E 2@

Bl @ System | | =
4 Emulation
--------- n CPU Server socket
_________ 4 Mapping to senal lines
. Memory CoM3:
......... i % coml fity0 4 Mapping to sockets
Lm Port 20000
......... J % com2ftty 4 Terminal Emulator
- Arguments -load emuvm_com1
""""" _ glal Executable C\Program Files\AlphaVM\putty exe
=3 Launch True
......... ﬁ&; ethl RxDelay 0
......... .f:. ":3 disk0 Showlogo True
=
--------- ‘E_) cdrom
B
--------- 1 scsiptd
Se—
--------- Eﬂ Logging
--------- }J Launch
" Device
......... EL% Licensing Specifies host serial device (COM port) to be used for communication. For instance COM3:

Configuration loaded

Configuration properties:

e Server —selects the way the serial line emulation is served. Currently there are two possible
servers: socket and serial. The socket server maps the serial line to a TCPIP connection.
Normally this connection has a terminal emulator (e.g. PutTTY) on the other side. The serial
server maps the emulated serial line to a real host serial line (COM port). By default, the value is
socket. The serial server is available only in the professional version of the product.

e Device specifies the host serial device (COM port) to be used when the server is serial. For
instance, COM3:. This value is ignored when the socket server. Currently the SRM emulator
ignores the SRM variable changes related to the serial line. By default, it initializes the serial line
to 9600 baud, 8 bits, No flow control, no modem control.

e Port -is the TCPIP port number used to connect to the terminal emulator. The default value is
20000 for COM1 and 20001 for COM2. This value is ignored for the serial server.

e Launch - indicates whether to launch the terminal emulator automatically when the emulation
starts. The default value is true.

o Executable - The terminal emulator executable. By default, the terminal emulator is PUuTTY.
PUTTY is delivered together with the AlphaVM product. You can choose another terminal

emulator here. The default value is the path to putty in the AlphaVM product location. For
instance, “C:\Program Files\AlphaVM\putty.exe”.

e Arguments - The arguments passed to the terminal emulator executable. AlphaVM provides
default putty configurations for COM1 and COM2. In this example the PuTTY configuration
emuvm_coml1 is loaded. Note that the port property used here is the same as the port used by
the emuvm_com1. The default value is “-load emuvm_com1” for COM1 and “-load
emuvm_com?2” for COM2

e Showlogo specifies whether the VM prints logo text on the terminal when then terminal is
connected. The default value is true. This can be disabled, which is useful in situations when the
logo transmission breaks down the communication protocol.

e Session Log Enabled controls whether the session log is enabled

e Session Log Append indicates whether the session log is open in append mode.

e Session Log Binary indicates whether the session log is open in binary mode.

e Session Log File specifies the session log file. The log file gets all the output in binary mode.

3.10 Ethernet configuration

The AlphaVM system emulates Ethernet adapter based on DEC21x4x also known as Tulip. You can add
these adapters in the “Configure” menu. The added adapters are named automatically: ethO, eth1, ...
Only the last controller can be removed to preserve this naming sequence. The removal option is
available on right click.

Some Alpha systems have one or two built-in Ethernet adapters. Configurations ethO and eth1
correspond to the built-in adapters in this case. These adapters will be present in the VM even if not
configured in the Launcher GUI.

The emulator communicates with the real Ethernet by means of WinPcap packet filter driver. The user
has to provide the information about the connection. In particular, the user has to specify which
Windows network interface will be used by the emulator.

L'_' AlphaVM Launcher - foo_1 5.emu - O X
File Configure Emulation Tools
~u Ty | g
sHe > E 2@
(Bl System =4} |
v Emulation
--------- B dec21040 v
v BEhemet
......... . Memony Address Mode user
e ' User Defined Address 030028000001
--------- J % comlAyD Interface Ethemet
= Device “Device \MPF_{438E678C-BDBE425F-8500-BEARTIBBBTES]
""""" [§ comZtyl Host Current MAC (00FF438E6TSC
T Host Pemmanert MAC (eD0OFF438E67EC
--------- h glal Emulated Address (e02002E00000
3 FxBufSize 0
--------- ﬁﬁ. ethl TwBufSize 0
. - . DmaCache False
--------- i | disk v PCI
E Slat auto
--------- l‘\(_} | cdrom(v Tracing
) il TraceRx False
Eﬂ Logging TraceTx False
5o TraceFiter False
? Launch StatPeriod 0
-------- “, Licensing =
Type of the emulated Ethemet Adapter. DEC21143 is in field test state.
Cenfiguration loaded

Configuration properties:

o Type defines the emulated Ethernet controller type. Currently we have just two options
available:

o dec21040 — a 10Mbit controller also known as DE435

o dec21143 —a 100Mbit controller also known as DE500

o Address Mode specifies how the emulated station MAC address is constructed.

o user —the emulator will use the User Defined Address as the station address. Make sure
all MAC addresses are unique on your network. This is the default value.

o host —the emulator will use the MAC address of the host NIC. This setting is to be used
NICs dedicated only to AlphaVM. The Windows IP protocols have to be disabled on this
NIC, otherwise a MAC address conflict would occur. Both the host and the guest systems
would have an IP stacks using the same MAC.

o auto —the address is automatically generated. This option is convenient, because you
do not have to invent a unique address. Note however, that the address will not be
unique when two instances of the emulator process use the same host NIC. This is
because the instances do not coordinate the MAC address allocation. Use the user
defined address mode if you are configuring several instances sharing the same host

NIC. Within one instance, if several AlphaVM NICs use the same host NIC, the addresses
will be unique.

e User Defined Address specifies a MAC address to be used when Address Mode is user. If
Address Mode is not user, this field is ignored. The address is specified in a TCPDUMP format, as
a hexadecimal number. If there are several emulators on your network, make sure their
Ethernet controllers have a unique MAC addresses. Otherwise MAC address conflict occurs.

o Interface specifies the Windows network interface used to connect to the network. Normally
you would use “Local Area Connection” or “Local Area Connection 2”.If you wish to disable
network, use “No interface”, which disables mapping of the emulated Ethernet to any host
network interface.

Note that not all wireless controllers seem to work with the emulator. Please select wired
controllers.

The default value is “Local Area Connection”, if it exists; otherwise it is “No mapping”.

e RxBufSize specifies the PCAP RX buffer size in megabytes. The default is zero, which means that
the default PCAP buffer size is used.

e TxBufSize specifies the PCAP TX queue size in megabytes. The default is zero, which means that
a default queue size is used.

e DmacCache specifies whether the NIC (Tulip) caches the DMA translations. This option allows to
significantly decrease the number of DMA translations. It works if the DMA rings reside at a
constant DMA addresses, which appears to be true for the supported guest OSes. The default
value is false.

e Device shows the device name used by WinPcap. This property is read-only and is shown for
informational purposes.

e Slot specifies the PCl slot to which the adapter is plugged. The default behavior is automatic;
thus, you do not have to specify this option or know about slots. The automatic behavior covers
most cases with OpenVMS. Tru64, however, is very sensitive to changes in the hardware
configuration. When you copy your disk images from the real system, it can be required to
specify the slots in such a way to reflect the configuration of the real. The number of slots
depends on the actual emulated system. The mapping of the slots to PCl hoses and IDSELs also
depends on the system.

e TraceRX enables tracing of the packets received by the NIC.

e TraceTX enables tracing of the packets transmitted by the NIC.

e TraceFilter enables tracing of filter changes on the level of the NIC and PCAP.

e StatPeriod specifies a period used to print PCAP level statistics. The default is zero. Zero means
that the trace is disabled.

The emulator shares the same Windows network interface with other Windows programs. However, the
emulator maintains a different Ethernet address from Windows. This is necessary that the address is
different, so that packets meant for the emulator are not mixed with packets meant for Windows.

For performance reasons you may wish to use a dedicated network interface for the emulator. To
achieve this, disable all Windows protocols in Windows NIC settings. In this case Windows will not
interfere with the activity of the emulator. You may also wish to use the same Ethernet address as the
real address of the Windows NIC.

3.10.1 Communication between the host and AlphaVM

When both the host and the emulator use the same network interface, there is a problem of
communication between the host and the guest. This options works only for communication with a
remote system. However often it is desired to communicate between the host and the guest. For
instance, you may wish an X-server running on the host to connect to the guest. This section describes
how to configure network to allow for such communication.

The simplest solution is to use a dedicated host network interface for the emulator. Thus, you should
have two network interfaces in your host: one used by the host and one by the emulator. They should
both be connected to the same network. In this way packet sent between the host and the emulator go
through the real network. It works just like it normally works with a remote machine.

Another solution involves a virtual network within your system to communicate between the host and
the emulator. It can be achieved by means of Microsoft Network Bridge. The given solution is tested on
Windows 7. All you have to do is to create the bridge and to add your host NIC (e.g. “Local Area
Connection”) as a single NIC to it. You should still use your real NIC in the emulator (not the bridge).

Create the bridge as follows:

e Open Control Panel/Network and Sharing Center/Network Connections

e Select two NICs: your NIC (e.g. Local Area Connection) and any other NIC.

e Right click on selection and choose “Bridge Connections”.

e The bridge is created. You can throw the second NIC out of the bridge in the bridge properties
available via the right click.

3.11 VM logging configuration

Virtual machine produces log, which is saved to log file. The logging pane enables configuration of where
and how the log file is written. To view the log file use the Tools/VM Log menu item. When reporting a
problem with the product, please send us this log file.

J AlphaV¥M Launcher - foo.em i=h >

File Configure Emulation Tools Help

,__’?FI B> g

B@ﬂ System - l | =i
“ Logging
n CPU Append Mode False
c\Testivm_log &3
.». Memaory Max Backups 3
1 % com/ty0 Max Size 1
o 4 Time Stamp
" ¥ com2/tty1 TimeFormat “Y-%em-%d Y%eH: %M %S
. TimeFraction True
_ glal TimeMode local
- il etho
|| disk0
Py
O/q cdrom
- diskl
[Logaing
} Launch =
i File
E‘{ﬁ Licensing Virtual machine log file.

Started

Configuration properties:

e File specifies the file where the VM log is written. The default value is “vm.log”. By default, if the
path is not provided, the system uses the path of the current configuration file.

e Append specifies whether the log file is appended or truncated on every run. The default value
is false (truncate every time). Note that in append mode the file can become huge over time.
Note also that when you get a problem with the emulator, you should save the log file before
restarting of the emulation process, otherwise the log of the erroneous run will be lost. We
recommend to use non-append mode in conjunction with non-zero MaxBackups to save the log
files from the previous VM runs.

e MaxBackups specifies the number of of file backups maintained by the virtual machine. The
backups have the form of <logfile>.<version>. Newer versions have higher version numbers. For
example, when the log file is specified as c:\Test\vm.log, the emulator will create 3 backups:
c:\Test\vm.log.1, c:\Test\vm.log.2, c:\Test\vm.log.3. The default value is 3. The emulator creates
a backup each time the log is opened in non-append mode. If the maximal size of the log file is
specified, the old log is saved as a backup and the new log is opened.

o MaxSize specifies the maximal size of the log file in megabytes. When the size is reached, the
log file is closed and the new log file is created. If MaxBackups is not zero, the old log file will be

saved as a backup. Essentially this logging method creates a ring of log files. This method
ensures that the logging on the server would never exceed the size of the log file and its
backups.

o TimeMode specifies the time logging mode. By default the local time stamp is printed.

o None -notime stamp

o Counter microsecond tick counter is printed. This value can be used when a lot of
tracing is produced to minimize the time needed to obtain the timestamp.

o UTC-log UTC timestamp. The actual time format is specified by TimeFormat.

o Local —log local time stamp. The actual time format is specified by TimeFormat.

o TimeFormat specifies the format of the timestamp for UTC and local modes. The format
specification is the same as for strftime() function. Use the drop-down list to see some common
formats.

o TimeFraction specifies whether to log time fraction. Time fraction is appended in microseconds
to the time stamp in the format .NNN.

3.12 VM launching configuration
The Launch configuration pane enables specification of the virtual machine to launch and of its
properties.

I8 AiohavM Launche ==

File Configure Emulation Tools Help

A= =%

#

&
< @

)41 |
4 CPU Affinities

(i cPU Process Affinity 0x0000000000000000
Memory 4 Launch]
= Executable CA\Program Files\AlphaVM\alphavm_exe
ek % comi ity Restart True
= WorkingDirectory
el % com2fty 4 Process Working Set
_ MaxWorkingSet 0
- qla0 MinWorkingSet 0
] i 4 System File Cache
- Tl eth0 35 MaxSystemFileCacheSize 0
1I'Ié-4 athl) mﬁ;ﬁmFil?CacheSize 0
—y rmation
{94 cdrom Build Date May 14 2014
- Build Target win-vista-x64
el) disk0 Build Time 18:06:27
f . License Type commercial
o diskl Product AlphaVM Professional

Version 150

--------- -, Launch s Build Date
- Wirtual machine build date and time.

Configuration loaded

Configuration properties:

e Executable specifies the VM executable. You can change the executable in order to provide an
alternative virtual machine, which can be useful when experimenting with different versions.
The default value is the main product virtual machine executable, for instance, “C:\Program
Files\AlphaVM\alphavm.exe”.

e WorkingDirectory specifies the working directory for the virtual machine. The working directory
determines where files with relative filenames are located. If this property is empty, the path of
the configuration file will be used as a default working directory. The default value is empty.

e Restart specifies whether to restart the VM if it exits. This option is used only by the EmuVMSrv
service that manages automatic startup of the VMs.

e Process Affinity specifies a CPU affinity mask to be used by the VM process. Each CPU in the
mask specifies whether the VM can run on the corresponding host CPU. This feature allows
limiting the amount of the CPU resources used by the VM. The default value is zero, which
means that the VM can run on any available CPU.

e MinWorkingSet and MaxWorkingSet specify the minimal and maximal working set limits. These
are advanced settings. Do not change them unless you are sure what you are doing. Wrong
settings can badly affect the emulator and the system performance. The default value is zero,
which means that the virtual machine sets the limits automatically. Working set limits can be
changed to tune the VM performance in case the system defaults do not work well. Working set
is the amount of physical memory used by the process, in our case the VM. Too low working set
limit can cause VM page faults on the emulated memory access, which can disturb timing of the
emulated CPU. Too high working set limits can lead to lack of resources for the host system,
which degrades the whole system performance including the VM.

e MinSystemFileCacheSize and MaxSystemFileCacheSize specify the limits for Windows file
cache. These setting are system-wide settings. The values are in megabytes. The emulator can
adjust them at startup. Note that the settings do not survive the host OS reboot. This is an
advanced setting. The default values are zero, which means that the system settings are not
changed. The recommended size for the file cache can be around 20% of the host RAM.

e VM Information fields show the currently selected virtual machine properties.

3.13 Licensing information
The licensing configuration node contains information related to licensing of the product.

AlphaVM Launcher - foo.emu

File Configure Emulation Tools Help
N . . /'5‘\
| EHe->»5/@

......... I.f" b comljtyd *
= 4 License Requirements
""""" (L com2ftyl CPU Units 10
J| Memory Units. 1
""""" TﬁH eth0 i = Licens-e Server Access
......... h qla0 Host localhost
! Password default
--------- B g Por 19992
l. . User sys0
"""""] diskd 4 License Server Information
|) Avaliable CPU License Units 160
""""" = disk1 Avaliable Memory License Units 32
_________ S disk? = Claimed CPU License Units 0
— Claimed Memory License Units 0
......... i?j cdrom E:(pil.'EItiCII‘? Date none
! Runtime limit 0
--------- rfj Logging Serial Number 4
& Total CPU License Units 160
""""" } Launch Total Memaory License Units 32
_________ a _ : _
. | 4 Avaliable CPU License Units
~ CPU License Units currently available on the server
4 | Tl [»

Configuration loaded

Properties:

e Host is the IP address of the system running the EmuVM licensing service. When using a USB

dongle, this is normally localhost. For evaluation set the evaluation server IP provided by

EmuVM.

e Port specifies a port number used to connect to the licensing service. Use 19991 with the

evaluation license server. Use 19992 with a USB dongle server.

e User is a username used to connect to the licensing service. For evaluation, use the user name

provided by EmuVM. When using a USB dongle it is usually sysO unless another name is

provided by EmuVM.

Password is a password used to authenticate the user at the licensing service. When using a USB
dongle, please use default. Otherwise, use the evaluation password provided by EmuVM.
License requirement properties are read-only. They show the amount of units required by the
current configuration of the emulator.

License Server Information group of properties are read-only. They show the information about
the currently connected licensing server. These properties are updated when you switch to the
Licensing configuration node in the left panel. If you change the licensing information, please
select another node (for instance logging) and then back to Licensing.

3.13.1 Configuring for evaluation

The AlphaVM evaluation can be done using a remote EmuVM server. You will receive the server IP
address, port number, username and password to be used. The EmuVM evaluation server uses the port
19991.

Please make sure the outgoing port is open at your firewall and ati-virus software. Please first use ping
to check the availability of the server.

3.13.2 Configuring with USB dongle on the local machine

The dongle service is called keylok_service.exe. It is available in the \Program Files\AlphaVM directory.
The AlphaVM installer installs and starts the service. The service appears as EmuVMlLicense in the
Windows Service manager. You do not have to do anything special to start the service. Configure your
emulator as follows:

e Host=localhost,

e Port=19992,

e User=sys0,

e Password=default.

3.13.3 Configuring with USB dongle on a remote machine

If you wish to run the service on a remote machine, you can do it in two ways. The simplest is just to
install AlphaVM-Pro on that machine. The installer will install and start the service. The emulator on that
machine will not be unused; it will not use any license units.

Alternatively, you can copy just the service executable keylok _service.exe to the machine where you
wish to have the dongle plugged. You will have to install and start the service as follows

keylok _service --install
keylok_service --start

Service c can be uninstalled as follows:
keylok service --stop
keylok_service --uninstall

In either case configure the Host address of the remote license server to refer to the machine where you
have the license server and the dongle.

3.14 Configuration of multiple instances

It is possible to run several VM instances on a single host system. AlphaVM instances can be run from
the launcher GUI, command line or as a service. Each instance must have a unique configuration file. You
must take care that:

e No single configuration is launched twice

e There is no multiple use of resources private to each instance.
The following steps are needed to configure several instances

e Make a separate directory for each system configuration.

e Place the configuration file for each system in the corresponding directory.

e Place the private disk and tape images in the corresponding directory.

e Set unique MAC addresses for each network card in each configuration.

e Make sure the serial line configuration use unique ports.

e Set CPU affinities in such a way that different instances use different host CPUs. CPU affinity is a
bit mask where each bit represents one host CPU core or hyper-thread. When a bit is 1, the
corresponding core is used to run the corresponding instance of AlphaVM. The table below
contains the affinity setting examples.

e For AlphaVM-Pro: set the licensing information for each instance. The information about license
settings will be provided when you purchase the product.

In particular, take care that, if you run an instance as a service, you do not launch it from the GUI
launcher.

4 Emulator operation

4.1 Running a VM from the GUI launcher.

4.1.1 Starting the emulation
When the configuration is done, you can start the emulator by means of the Emulation menu or by the
toolbar buttons.

4.1.2 Stopping the emulation

Please do not stop the emulator by means of the user interface stop button unless it is necessary. This
corresponds to an abnormal system power failure and can cause troubles with the guest operating
system or other guest software currently running in the emulator. Instead, shutdown the guest system
and use SRM power command to "power down" the emulated system.

4.2 Running a VM from command line

Sometimes it is more convenient to run the virtual machine from the command line than from the
Emulaunch user interface. On Linux there is no launcher yet, so the only option is to run from the
command line.

The launcher not only starts the VM itself, but also the terminal emulators, if configured. When running
the VM from command line, the user has to connect the terminal emulators manually.

The VM is started as follows:

alphavm.exe <config-file>

Here it is assumed that alphavm.exe is either in the PATH or in your current directory. Here is a full
example of the command line:

"C:\Program Files\AlphaVM\alphavm.exe" c:\Test\foo.emu > foo.log 2>&1

Normally the configuration file is created by the Launcher. When running VM directly, the user has to
write the configuration file. Alternatively, one can modify a file created by the launcher.

To see an example of a configuration file use Tools menu/ View configuration as text.

4.3 Running a VM as a service
AlphaVM-Pro can be run in a context of a Windows service. There is a special service — EmuVMSrv. It is
installed by the installer to manage the VMs. Multiple instances can be started as a service.

There is a special EmuVMSrv configuration file “\Program Files\AlphaVM\emuvmsrv.cfg”. Each line in
this file specifies a full path to the VM configuration to be run. Usually it is a file that just contains one
line. For example:

C:\Test\foo.emu
A line can be empty. A line starting with the # character is ignored (i.e. it is a comment).
A VM configuration can be created as usually by the GUI.

Initially emuvmsrv.cfg is empty. If it is empty, the EmuVMSrv service stops. When the emuvmsrv.cfg is
changed, restart the service to take the effect. Currently the service does not automatically rescan the
configuration file.

The service log is stored in “\Windows\system32\emuvm-server.log”. This filename can be changed in
“emuvm-server.cfg”.

When you are running multiple VMs on a single Windows host, you have to consider that the instances
may have a resource conflict, if you do not take care of it. See Configuration of multiple instances for the

details.

Note that all instances running in a service and all instances running interactively have to be considered
when thinking multiple instances. In particular, note that an instance, that runs automatically, should
not be run interactively at the same time.

The VM configuration Launch section contains a parameter called Restart. The EmuVMSrv service uses it
to check what to do if the service stops.

EmuVMSrv does not start the terminal emulators that are normally started by the GUI launcher. You
have to connect the terminal emulators manually.

5 Usage example

5.1 OSinstallation on a new disk
This is a general sequence of installing of an OpenVMS, Tru64 or Linux on the emulated system.

Step 1: Create an empty disk by means of Tools/Make disk
Step 2: Configure the diskO to use the just created empty disk image.

Step 3: Configure the cdrom to map to your ISO file. Alternatively, use \\.\Cdrom instead of the disk
image to use the real CD .

Step 4: Save configuration to a file, say vms83.emu.
Step 5: boot from cdrom: boot dkad400
Step 6: Follow the OS installer sequence as usually. The target disk for the installation is DKAO.

Step 7: When the installation is completed, you can boot from the new system: boot dkaO.

6 Migration

A real system can be replaced by the emulator software. Firstly, the emulator should be configured to
reflect the real system as close as possible. Secondly the software should be transferred to the
emulator.

6.1 Migration by copying disks

The simplest way of migration is by copying the real system disks to disk images and then using these
disk images to run the emulation. Thus, the whole OS, software and data are copied. The new system
behaves in the same way as the old one.

Unfortunately, this method does not always work. Currently we cannot emulate all kinds of Alpha
systems and all kinds of peripheral devices. Some OSs and applications are flexible and can run on a
different hardware configuration without changes. Others require more or less complicated
reconfiguration.

6.1.1 Copying disks using a Live Linux CD

When a system is booted from a disk, this disk cannot be modified while being copied. To avoid such
problems you can boot a Linux system form so called Live CD (for instance, Gentoo LiveCD). In this case
you get a booted Linux system that does not use any of you OpenVMS or Tru64 disks. This Linux system
can be used to copy your disks by means of the dd command. You will have to use a storage on the
network to store the resulting disk images.

When copying disks please use the whole disk devices like /dev/sda, rather than partition devices (like
/dev/sdal)

file://///./Cdrom

Please note that Tru64 can be very sensitive to configuration changes. When the copied disk image is
booted in the emulator it may fail due to difference in the configuration. In this case, you can boot the
generic kernel and reconfigure/rebuild your kernel as usually.

See a detailed example on emuvm.com/migrate_vms.php.

6.1.2 Migration of OpenVMS using backup /image
The usual way to migrate OpenVMS is to use backup /image copies of the disks. The following
command can be used to make such backups:

$ mount dkalee: /over=id

$ backup /image/verify dkalee: dka500:[000000]foo.sav/sav
You can use the command to backup your system disk.
The following commands can be used to restore disk images:

mount dkalee: /foreign

backup /image/verify dka500:[000000]fo0.sav/sav dkaleo:
The migration process can be outlined as follows:

1. Make backup /image backups of all disks in your system and make them available via the
network.

2. Install AlphaVM and create N+1 empty disk images. Add the disk images to the emulated
system. One disk will be used for a freshly installed copy of OpenVMS. The other disks will be
used to restore your original disks. The AlphaVM disk images can be larger than the original
disks.

3. Install a fresh copy of OpenVMS on AlphaVM and configure the network to access the disk
backups.

4. Restore the disk backups from the files to the empty emulated disks.

5. Boot from the restored system disk.

It is advised that your fresh system disk is made large enough to contain any of the *.sav files (or all of
them). It this case you can restore from a local copy rather than from a DECNET remote copy. It is
possible to use TCPIP to ftp files and you do need to configure DECNET.

6.1.3 Copying disks on OpenVMS

On OpenVMS a proper disk image can be created by means of backup /physical. Please note that the
physical image has the same size as the original disk. Therefore you need to have enough storage to
store the resulting file. Please note that you can use a network path for the destination file.

6.1.4 Copying disks on Tru64

On Tru64 a proper disk image can be created by means of the dd command. Please note that the
physical image has the same size as the original disk. Therefore, you need to have enough storage to
store the resulting file. Please note that you can use a storage available via the network as the result,
for instance NFS.

6.2 Migration by reinstalling software
When it is impossible or inconvenient to copy disks, the software can be installed on the emulator in the

usual way. These are the steps to be done:

e |[nstall the OS and its layered products.
e Install and configure the application software.
e You may need to copy data from the old system.

