

AlphaVM for Windows
User Manual

Date: 01-Sep-2024

Author: Artem Alimarin

Version: 1.6.19

2024, EmuVM.

TABLE OF CONTENTS

1 Scope ... 3

2 Installation .. 4

2.1 Host platform requirements ... 4

2.1.1 Requirements for AlphaVM-Pro ... 4

2.1.2 Requirements for multiple instances .. 4

2.2 Obtaining the software ... 5

2.3 Installation procedure ... 5

2.4 Uninstallation .. 5

3 Configuration .. 6

3.1 System configuration .. 6

3.2 CPU Configuration ... 8

3.3 Memory configuration .. 9

3.4 SCSI Controller Configuration ... 10

3.5 Disk configuration ... 10

3.5.1 Disk names in AlphaVM SRM console ... 14

3.5.2 Performance considerations ... 14

3.6 CDROM configuration ... 14

3.7 SCSI Tape configuration .. 15

3.8 SCSI Pass-Through (aka Direct SCSI, aka Generic SCSI) Configuration .. 16

3.8.1 SCSI Tapes ... 18

3.8.2 iSCSI devices .. 18

3.8.3 Non-SCSI disks ... 19

3.8.4 Booting from a SCSI Pass-Through device .. 19

3.9 Serial port configuration ... 19

3.10 Ethernet configuration .. 21

3.10.1 Communication between the host and AlphaVM .. 24

3.11 VM logging configuration .. 24

3.12 VM launching configuration .. 26

3.13 Licensing information.. 28

3.13.1 Configuring for evaluation .. 30

3.13.2 Configuring with USB dongle on the local machine .. 30

3.13.3 Configuring with USB dongle on a remote machine ... 30

3.14 Notifications .. 30

3.15 Configuration of multiple instances .. 31

4 Emulator operation ... 32

4.1 Running a VM from the GUI launcher. .. 32

4.1.1 Starting the emulation .. 32

4.1.2 Stopping the emulation .. 32

4.2 Running a VM from command line ... 32

4.3 Running a VM as a service .. 33

5 Usage example .. 35

5.1 OS installation on a new disk .. 35

6 Migration... 35

6.1 Migration by copying disks ... 36

6.1.1 Copying disks using a Live Linux CD .. 36

6.1.2 Migration of OpenVMS using backup /image ... 36

6.1.3 Copying disks on OpenVMS .. 37

6.1.4 Copying disks on Tru64 ... 37

6.2 Migration by reinstalling software .. 37

1 Scope
This is a user manual for the AlphaVM line of products currently represented by AlphaVM-Pro,

AlphaVM-DC and AlphaVM-Basic running on Windows.

AlphaVM-Pro, the professional Alpha system emulator. It is meant to replace Alpha servers working in

data centers or industrial settings. It has high performance and reliability characteristics. It's

performance is on the level of the real Alpha systems. AlphaVM-Pro is capable of replacing machines of

DS10, DS20, ES40, DS25, ES45 class of Alpha systems.

AlphaVM-DC is a variant of AlphaVM-Pro for data centers. The main difference is in the licensing.

AlphaVM-DC license binds to the hypervisor appliance virtual hardware rather than to a USB dongle.

AlphaVM-Basic is a basic emulator that supports 1 basic CPU and 1GB RAM.

2 Installation

2.1 Host platform requirements

2.1.1 Requirements for AlphaVM-Pro

The general requirements are as follows:

• The operating system must be Windows x64 6.0 or higher:

o Windows Server 2012R2 or higher

o Windows 8 or higher

We recommend a server operating system Windows Server 2012R2.

• The host system must have a CPU with AVX2 and BMI instruction set support.

• The host CPU performance has a direct influence on the emulated system performance. The

actual host CPU type depends on your performance requirements. We recommend fast new

Intel CPUs (at least 3GHz). HP ProLiant servers can be equipped with these CPUs.

• The product requires a reserved host CPU core for each emulated CPU. This means that a single

CPU emulator requires at least a dual-core host system. A dual CPU emulator requires a 3 core

system. We advise a double amount of cores with respect to the emulated CPUs.

• The host memory requirement depends on the emulated Alpha memory size and other

emulator settings. The general requirement is as follows: if the emulated system has N GB

memory, than the host system must have at least N + 2GB memory. Besides the emulated

memory size, the following factors may influence the required amount: number of CPUs,

number of disks, caching settings for disks. We advise at least N + 4GB.

• JIT CPU versions require more memory and CPU resources than the basic CPU.

• The product is supported on virtual platforms: Hyper-V, VMware, Proxmox VE. The product may

also run on other platforms like Virtual Box. This document does not cover in detail the

configuration specifics for these platforms. Some details can be found on our website.

• Emulated Ethernet controllers are mapped to host Ethernet controllers (NICs). Note that

mapping to Wireless Ethernet controllers does not always work. It is advisable to have a

separate host NIC for each emulated NIC.

The actual requirements are very specific for a given configuration and workload. Contact our support to

get an advice about hardware required for your configuration.

2.1.2 Requirements for multiple instances

It is possible to run multiple instances of the emulator on the same host machine. The requirements in

this case just add up.

For instance, if you run two similar virtual machines on the same host, the requirements are double of

the single instance requirements.

2.2 Obtaining the software
Please contact us per e-mail

 mailto://sales@emuvm.nl

AlphaVM-Pro requires a USB license key to run. The key and the software will be sent to you when you

purchase the software.

AlphaVM-DC requires a software key to run. We generate the license key based on the information

about hypervisor appliance virtual hardware provided by our tool.

The software license price depends on the virtual Alpha system configuration. You can request a quote

on the page http://emuvm.com/alphavm_pro_quote.php.

2.3 Installation procedure
The product is distributed in the form of Windows installer package. To install the emulator, run the

installer. Then just follow the installation procedure.

The installer installs the following third party components needed for AlphaVM operation.

• .NET Framework. The installer will check and install the .NET Framework 4. It is required for

proper operation of the user interface. The installer does not contain the full redistributable

package of the framework. Instead, it will try to perform a network download and installation. If

needed, you can install the framework before the installation.

• PuTTY terminal emulator. PuTTY terminal emulator is used to connect to the emulated Alpha

serial console. The user can use another terminal emulator. However, we recommend installing

PuTTY anyway as a fallback. The putty executable will be put in the same directory where the

emulator is installed.

• WinPcap Ethernet packet driver. WinPcap is used to pass packets between the emulator and

the real network. This is widely used driver certified to work in Windows operating systems. You

may want to disable installation of WinPcap if it is already installed. This is especially useful if

you want to keep another version of software.

For AlphaVM-Pro the installer installs the following Windows services:

• EmuVMSrv. This service is needed to run the virtual machine automatically. It’s executable is

emuvmsrv.exe

• EmuVMLicense. This service implements the licensing mechanism. The executable is

keylok_service.exe.

2.4 Uninstallation
To uninstall the emulator use the "uninstall" icon provided in the program menu reachable from the

Start menu or launch the un-installation otherwise.

3 Configuration
Before you can run you virtual Alpha system, it has to be created and configured. The VM configuration

specifies properties of the emulated system: the number of CPUs, the memory size etc.

The emulator is configured by means of the elements of the user interface. The configuration tree

allows selecting objects to configure. The property grid on the right side allows specifying properties of

the selected object.

The configuration can be loaded and saved via the file menu or via the toolbar.

3.1 System configuration
System configuration screen enables configuration of the emulated Alpha system.

Configuration properties:

• SystemType specifies the type of the emulated system. Currently the following systems are

supported:

o AlphaServer DS10 466MHz, model 1839 (ds10_466)

o AlphaServer DS10 616MHz, model 1970 (ds10_616)

o AlphaServer DS10L 466MHz, model 1961 (ds10l_466)

o AlphaServer DS10L 616MHz, model 1962 (ds10l_466)

o AlphaServer DS20 500MHz, models 1839, 1920 (ds20_500)

o AlphaServer DS20E 500MHz, models 1840, 1921 (ds20e_500)

o AlphaServer DS20E 667MHz, models 1939, 1940 (ds20e_667)

o AlphaServer DS20E 833MHz, models 1982, 1983 (ds20e_833)

o AlphaServer DS20L 833MHz, model 2006 (ds20l_833)

o AlphaServer ES40 500MHz, models 1813 -1816 (es40_500)

o AlphaServer ES40 500MHz, models 1817 -1820 (es40_667)

o AlphaServer ES40 833MHz, models 1984 – 1987 (es40_833)

o AlphaStation XP900 466MHz, model 1879 (xp900_466)

o AlphaStation XP900 500MHz, model 1821 (xp1000_500)

o AlphaStation XP900 667MHz, model 1822 (xp1000_667)

o AlphaStation XP900 750MHz, model 1922 (xp1000_750)

• SystemTypeId shows an internal system type identifier for SystemType. Launcher passes this

identifier to the VM to select a system to emulate.

• ReportedSystemType specifies the type of the system reported to the OS informational routines

(like licensing). This option allows a system pretending to be another system, which is not

actually implemented. By default, the same system information is returned as specified by

SystemType. The value default instructs the system to use the same type as the specified by

type. See values in the drop down menu of the Launcher. Other systems can be added upon

request.

• ReportedSystemTypeId shows an internal system type identifier for ReportedSystemType.

Launcher passes this identifier to the VM to select a system.

• NumCPUs specifies the number of CPUs in the emulated system. Please note that on a 32-bit

Windows multi-processor configuration is not supported. The emulator reserves one core of the

host system for each emulated CPU. The emulator needs at least one core for bookkeeping and

IO processes. Thus, you need a dual core system to run with one emulated CPU, and at least 3-

cores to run a dual CPU configuration. The maximal number of CPUs depends on the emulated

system and on the product license. The default number of CPUs is 1.

• SSN specifies the system serial number of the emulated system. SSN is often used by third party

software to identify the hardware for licensing purposes. This value is a string of max 16

characters long.

• Interval Clock Frequency specifies the interrupt clock frequency in Hz. Interrupt clock frequency

specifies the number of timer interrupts per second. Please do not change this value unless you

know what you are doing. This value can affect stability of the system. The standard Alpha

frequency is 1000 interrupts/second. However, this frequency can be changed for performance

tuning reasons. It is communicated to the operating system via HWRPB. OpenVMS and Tru64

adjust to this value. For performance reasons, it could be better to set this value to 100.

Currently Linux does not seem to work correctly with non-standard values.

• Busy Clock Wait specifies whether to use a busy loop to make the clock intervals precise. The

default value is True, which corresponds to the behavior of the product prior to introduction of

this option. This option is introduced to prevent excessive CPU usage by the timer when the host

is not capable of providing reliable intervals. Disabling busy loops can be useful when running on

a host with scarce CPU resources or on a virtual host that is poorly scheduled.

• Cycle Counter Frequency can be used to override the default cycle counter frequency defined

by the emulated system. The default value for this option is zero, which means that the default

clock of the emulated system is used. This option does not influence the real performance of the

VM. However, this option can be useful when an application in the guest system uses a timing

calibration algorithm based on the cycle counter frequency.

3.2 CPU Configuration
CPU configuration node is used to configure all CPUs in the system. All CPUs in the system will get the

same properties.

Configuration properties:

• Server specifies a CPU server to be used. Currently there are the following servers available:

o Basic server is a server with a basic performance.

o JIT1 is the server with the performance on the level of fast EV4. It is based on Just-in-

time compilation technology (JIT), which translates the Alpha code to a faster native

code.

o JIT2 is a server with the performance on the level of high-end EV5 – low-end EV6 Alpha

CPUs.

o JIT3 is the fastest server with the performance of high-end EV6 – EV7 Alpha CPUs. Its

performance is approximately double of JIT2.

• Statistics Period specifies the period between the CPU statistics dumps. For the workload

profiling purposes, the CPU can dump statistics over a specific period. The default value is zero,

which means that the dumps are disabled. Do not turn this option on for a production system.

• TBCHK specifies whether PAL TBCHK instruction is implemented. By default, it is not

implemented. Do not change this default unless you know what you do.

• Async JIT specifies whether JIT compilation process is synchronous with respect to the CPU or

asynchronous. By default, it is asynchronous. The synchronous mode is needed mostly for

debugging.

• Experimental Features enables some JIT optimizations that are have not yet proven stable.

These features are available on the field test basis and are not subject to the product support.

Do not enable the experimental features in production environment.

• Idle when enabled, instructs the emulator to release the host CPU when the guest OS is idle.

Most version of OpenVMS and Tru64 5.1b are currently supported. Note that this feature may

negatively affect the performance of some IO-bound loads. The idle feature is available only in

JIT CPUs.

• IMB Mode this is an advanced feature for performance tuning. Do not change it unless advised

to do so by EmuVM.

• Max JIT Pages specifies the maximal number of JIT pages that can be simultaneously active in

the system. Each JIT page corresponds to a single page of Alpha code. Please do not change

unless you know what you are doing. Lower values can lead to performance degradation, while

higher values can cause excessive memory usage.

• Code Size specifies the default size in KB for memory allocation of code chunks. The default is

256k. Too big chunks can cause excessive memory consumption. Too small chunks can degrade

the system performance due to frequent allocation. The advised values are in range 128 - 1024.

The value is rounded up to 64k.

3.3 Memory configuration
Configuration properties:

• Memory Size specifies the RAM size in megabytes of the emulated system. The amount of

memory you can use here depends on the amount of memory on your host computer. It is

recommended to have at least 2GB of host memory. Maximal memory size depends on the

emulated system and on the product licensing. The default size is 128M.

• Lock specifies whether to lock the guest memory in the host memory. Locking means that the

pages are not unloaded from the memory by swapping. Locking can degrade performance,

because other pages will be offloaded. This is an advanced option added for experimentation

purposes. Locking is by default off. Note that you can only lock pages when the working set is

large enough. If the VM fails to lock pages and logs an error, it continues without locking.

3.4 SCSI Controller Configuration
SCSI controllers can be added using the “Configure” menu and removed using a menu that appears on a

right-click. The controllers have consecutive fixed names: qla0, qla1, … Only the last controller can be

removed, which is to preserve this naming sequence.

The number of plugged controllers determines the number of SCSI buses available. You can select a SCSI

bus in the SCSI device configuration using the bus number option.

Some Alpha systems have one or two built in SCSI controllers. These controllers will be present in the

resulting system even if they are not present in the Launcher GUI configuration. Since the number of

available buses in the GUI depends on the number of controllers available in the GUI, the controllers

must be present to make the buses available.

The configuration of built-in controllers is given by qla0 and qla1. If the system does not have built-in

controllers, then qla0 and qla1 cause controllers to be loaded in the available system slots.

Configuration properties:

• The option SCSI ID specifies the SCSI ID of the controller. Values are 0 .. 15. The default value is

7.

• The option Slot specifies the PCI slot to which the adapter is plugged. The default behavior is

automatic; thus, you do not have to specify this option or know about slots. The automatic

behavior covers most cases with OpenVMS. Tru64, however, is very sensitive to changes in the

hardware configuration. When you copy your disk images from the real system, it can be

required to specify the slots in such a way to reflect the configuration of the real. However, we

advise to reconfigure Tru64 and rebuild the kernel rather than playing with the slots. The

number of slots depends on the actual emulated system. The mapping of the slots to PCI hoses

and IDSELs also depends on the system.

3.5 Disk configuration
New disks can be added using the Configuration menu. A disk can be removed or renamed by means of

a context sensitive menu available on right-click on the device in the configuration tree. Note that the

device name has no meaning for the system; it is only used for convenience. For instance, you can

choose this name to be

• the disk label of the disk like mydatadisk, or

• the disk name in the SRM console like dka100, or

• the disk device name in your guest OS, like rz12.

The disk image must exist before you can attach it to the emulator. A fresh disk image can be created by

means of the Make Disk tool available in the Tools menu. The Make Disk tool just creates an empty disk

image file. It does not attach it to the emulator. Therefore, you have to attach it yourself after creation.

The disk configuration table enables configuration of the emulated disk properties.

Configuration properties:

• Server specifies how the disk is served. The default value is default, which means that the

system determines how to server the disk. The servers are:

o basic – disk server based on a basic IO.

o cport – disk server based on asynchronous IO that uses Windows completion ports.

o mapped – disk server based on a memory-mapped file IO. This server can only be used

with regular files.

The default value normally maps to cport. In some cases it can map to basic.

• Image specifies a file name of the disk image file used to store disk data. An empty disk image

can be created with “Tools/Make disk”. Please note that creation of a disk image does not

connect it to the system. After creation, you still need to specify it in the Image property of one

of the disks. The default value is empty, which means that there is no disk.

• SCSI ID specifies the SCSI target ID of the disk. The SCSI ID can have values 0 .. 6, 8 - 15. SCSI ID 7

is reserved for the SCSI controller. All SCSI devices in the configuration must have unique SCSI

IDs. The default value is the disk number, which ensures that the disks have unique IDs.

• SCSI BUS specifies a SCSI bus to which the device is connected. The buses are numbered from

zero. The number of SCSI buses depends on the amount and type of the SCSI controllers in the

system. The number of SCSI buses depends on the amount and type of the SCSI controllers in

the system. If you see and empty drop down box, it can mean that you have no SCSI controllers

loaded. The default value is zero.

• SCSI LUN specifies SCSI logical unit of the disk device. The value can be 0..7. SCSI allows several

logical devices to be associated with a single bus device. The default is 0.

• Async enables asynchronous operation of the disk with respect to the SCSI controller. It is by

default True. It can make sense to turn it off for very fast memory-mapped IO, when extra

context switches may cause extra overhead.

• Caching specifies whether caching of the disk image file is enabled on the host operating system

level. The default value is off. In some situations, caching can improve IO performance.

However, we noticed that disk IO intensive usage with caching enabled leads Windows to use

most memory for disk caching, which results in excessive page faults, system trashing, and as

the result CPU sanity checks on OpenVMS SMP configurations. There are complicated inter-

decencies of this setting with the amount of available memory and working set settings.

• WriteThrough specifies whether write-through mode is enabled on the host operating system

level. The default value is off. See the comment on the option Caching.

• Shared specifies whether the VM opens the disk image in shared mode. Normally it should be

opened in exclusive mode to prevent multiple usage of the same file. The default value is false

(exclusive mode), which guarantees that the disk can be modified only by the emulator.

• ReadOnly specifies whether the emulated disk is read-only. In this case the VM opens the image

in read-only mode. The default value is false (writable)

• Removable specifies emulation of a removable disk. The default value is no. This option only

makes sense for an image file. Essentially, if the image file cannot be open, the “no medium”

status is returned instead of “offline”. The file is closed upon the SCSI STOP command with LOEJ

bit set. Unfortunately OpenVMS mount /unload does not set LOEJ bit. The following commands

can be used on OpenVMS to force unload of a disk (or CDROM):

$ rzt:==sysetc:rztools_alpha

$ rzt dka100: /stop

When such disk is mounted, AlphaVM tries to open the file.

• Vendor, Product, Revision specify the emulated disk attributes. When these attributes are

unset, the AlphaVM provides some default attributes.

• Vendor Specific specifies the vendor specific field in the VPD field.

• PRMode specifies how the SCSI persistent reservations are implemented.

o None – means that persistent reservations are not implemented and the disk returns

the status “invalid command” for these SCSI commands.

o Dummy – means that the device implements the commands, but no actual protection of

reservations is done. The implementation is dummy. This option can be used when

there is just one node working with the disk. It is useful for a single node Tru64 cluster.

o Real – the system implements persistent reservations.

Currently only none is supported.

• VPD enables SCSI vital product data reporting. The default is currently false.

• Device EUI-64 specifies the device indetifier in the EUI-64 form (8,12 or 16 bytes). This form is

provided by some SCSI or FibreChannel disk arrays. Example: 0000-0E11-0012-5205. It

corresponds to Tru64 SCSI-WWID:0c000008:0000-0e11-0012-5205.

• Device SCSI name specifies the device identifier in the SCSI name form.

• Device VID specifies the device identifier (VPD page 83). Example: DEVICE-VID-EMUVM-0001. It

corresponds in Tru64 to something like SCSI-WWID:03100025:"RZ26L DEVICE-VID-

EMUVM-0001".

• Device NAA specifies the device identifier in the NAA form (8 or 6 bytes). Example: 6000-1fe1-

0010-8d40-0001-0460-7270-00ca. This corresponds to Tru64: SCSI-WWID:01000010:6000-1fe1-

0010-8d40-0001-0460-7270-00ca.

• Device SN specifies the device serial number (VPD page 80): Example: DEVICE-SN-EMUVM-0001.

In Tru64 it corresponds to something like SCSI-WWID:0410002c:"DEC RZ26L DEVICE-SN-

EMUVM-0001". The device serial number can also be used to emulate a HSZ unit. To emulate

HSZ the vendor must be DEC and the product must start with HSZ. In this case the device SN is a

concatenated SNs of this HSZ and the other HSZ in the dual set (20 characters together, 10 for

each SN). Thus, ZG41000118ZG41000119 corresponds to Tru64 SCSI-WWID:0910003c:"DEC

HSZ70 ZG41000118ZG41000119:d00t00003l00000"

• Port EUI-64 specifies the device port EUI-64 identifier.

• Port NAA specifies the port NAA identifier.

• Port SCSI Name specifies the port name in the SCSI form.

• TraceCmd – enables tracing of SCSI commands

• TraceSense – enables tracing of SCSI sense information. SCSI sense information is normally send

when an error or a non-standard situation occurs.

• TraceIO – enabled tracing on the level of disk server.

3.5.1 Disk names in AlphaVM SRM console

The SRM or VMS disk device name, e.g. dkb1201, is formed as follows:

- The First two letters dk designate SCSI disk

- The third letter designate the SCSI controller number a=0, b =1, …

- The number n defines SCSI id and logical unit: id=n/100, lun = n % 100

Thus dkb101 means that the disk is connected to the bus of the second SCSI controller (bus=1), SCSI ID

is 12, SCSI Lun is 1.

3.5.2 Performance considerations

For most workloads it is recommended to use asynchronous IO with caching off and write through off.

Caching causes performance degradation for some operations like large file copy. In this case it causes

excessive swapping at the host OS level.

Caching can be beneficial when the disk is relatively small comparing to the host RAM.

Disk IO performance depends on multiple factors. Some of them are given below.

• AlphaVM process working set size. The working set limits can be set in the Launch configuration

section.

• Host system file cache size. It can be adjusted by the emulator at startup. See the Launch

configuration section.

• Whether or not Windows has a paging file.

3.6 CDROM configuration
CDROM configuration is similar to disk configuration.

New CDROM can be added to the system using the Add CDROM button. It can be removed or renamed

by means of a context sensitive menu available on right-click on the device in the configuration tree.

The image property here normally specifies a CDROM image file (ISO image). However, it can also be a

physical CDROM name like \\.\Cdrom0.

CDROM does not have write-related properties. ISO images are always opened in read-only mode.

To programmatically eject CD on OpenVMS use the following commands:

$ rzt:==sysetc:rztools_alpha

$ rzt dka400: /stop

On Tru64:

 scu –f /dev/rdisk/cdrom0c eject

file://///./Cdrom0

3.7 SCSI Tape configuration
AlphaVM supports virtual (logical) SCSI tapes. The tape is emulated using tape image file. A virtual tape

drive can be added from the configuration menu. As with other SCSI devices, the SCSI path should be

unique.

Currently the virtual tape drive has no button in the UI to load/unload the medium. On OpenVMS please

use rztools:

 $ rzt:==sysetc:rztools_alpha

Send load command to the tape:

 $ rzt mka600: /start

Send unload command to the tape:

 $ rzt mka600: /stop

On Tru64 the tape can be operated with:

 # scu -f /dev/rmt0h

Configuration properties:

• Image file specifies a file name of the tape image file used to store data. An empty tape image

can be created by creating an empty file. The default value is empty, which means that there is

no medium in the tape drive.

• SCSI ID specifies the SCSI target ID of the tape. The SCSI ID can have values 0 .. 6, 8 - 15. SCSI ID 7

is reserved for the SCSI controller. All SCSI devices in the configuration must have unique SCSI

IDs. The default value is the disk number, which ensures that the disks have unique IDs.

• SCSI BUS specifies a SCSI bus to which the device is connected. The buses are numbered from

zero. The number of SCSI buses depends on the amount and type of the SCSI controllers in the

system. If you see and empty drop down box, it can mean that you have no SCSI controllers

loaded. The default value is zero.

• SCSI LUN specifies SCSI logical unit of the disk device. The value can be 0..7. SCSI allows several

logical devices to be associated with a single bus device. The default is 0.

• Async enables asynchronous operation of the tape with respect to the SCSI controller. It is by

default yes. Tape it is a very slow device, which can block IO when in synchronous mode. This

option is provided for debugging.

• Initial Load specifies whether the tape medium is loaded in the drive when the emulator starts.

This is applicable only if the tape image file exists. If the image does not exist, it is considered

that there is no medium in the drive.

• AutoLoad specified with the tape is automatically loaded on access. This means that the tape

file is opened on access. When this option is off, a special load command must be issued to load

the tape (see rztools commands earlier in this section). When auto-load is on, you do not need

those commands. Note that multi-volume backups do not work with auto-load, because you do

not have a chance to swap the media: the tape will automatically reopen the same file when it is

done with the first volume.

• AutoCreate specifies whether an empty tape file is created, if it does not exist. It is convenient

because you do not have to create empty tape files yourself.

• Max Size specifies the maximal size of the tape image file. This parameter can be used to create

a multi-volume tape backup. The default value is zero, which means no limit.

• ReadOnly can be used to protect the tape from writing.

• Shared indicates the shared open mode of the tape drive.

3.8 SCSI Pass-Through (aka Direct SCSI, aka Generic SCSI) Configuration
AlphaVM-Pro is capable of accessing the host system SCSI devices by means of so called SCSI Pass

Through mechanism. SCSI commands and data are passed between the guest and the hosts systems “as

is”. This feature allows to access devices that are not available via the emulation layer. Examples of

where the SCSI Pass Through is useful include access to the following devices:

• SCSI tape, which is not available otherwise

• SCSI disk, which can be taken from the real system and attached to the emulator to simplify

migration

• ATAPI CDROM, which works as expected

• iSCSI disks

• SCSI devices of other types

Although the intention of SCSI Pass Through mechanism is to pass commands and data “as is”, some

options are available to adjust commands and data in such a way that some useful devices are not

rejected by OpenVMS or Tru64.

Configuration properties:

• SCSI ID specifies the SCSI target ID of the disk. The SCSI ID can have values 0 .. 6, 8 - 15. SCSI ID 7

is reserved for the SCSI controller. All SCSI devices in the configuration must have unique SCSI

IDs. The default value is the disk number, which ensures that the disks have unique IDs.

• SCSI BUS specifies a SCSI bus to which the device is connected. The buses are numbered from

zero. The number of SCSI buses depends on the amount and type of the SCSI controllers in the

system. The number of SCSI buses depends on the amount and type of the SCSI controllers in

the system. If you see and empty drop down box, it can mean that you have no SCSI controllers

loaded. The default value is zero.

• SCSI LUN specifies SCSI logical unit of the disk device. The value can be 0..7. SCSI allows several

logical devices to be associated with a single bus device. The default is 0.

• Async enables asynchronous operation of the unit with respect to the SCSI controller. It is by

default False. A slow device in a synchronous mode can block IO. This option is provided for

debugging.

• Device specifies the Windows device used to access by the SCSI Pass Through. It can be for

instance “\\.\Tape0” or “\\.\PhysicalDrive2”. If the value is empty, the following properties are

used to identify the device: Host SCSI Port, Host SCSI Path, Host SCSI Id, Host SCSI Lun. These

parameters are used to access the device through \\.\ScsiX. The default value is empty.

• Host SCSI Port, Host SCSI Path, Host SCSI Id, Host SCSI Lun specify the SCSI path of the host

device. These options are ignored when the Device is specified. Their default values are all zero.

• Suppress VPD enables suppression of Vital Product Data in the SCSI Inquiry.

• Emulate MP1 enables emulation of SCSI Mode Page 1 (read-write error recovery) in case the

device does not provide it.

• ConvertCDB enables conversion of 6-byte SCSI commands to 10-byte SCSI commands. This

mode is can be used to access some ATAPI devices. The default value is False.

• Trace Command enables logging of commands with sense data. Normally sense data is

associated with errors or non-standard situations, so you may wish to enable it to see if

something is going wrong. The default value is False.

• Trace Sense enables logging of all SCSI commands. This option is for debugging. The default

value is False.

3.8.1 SCSI Tapes

One of the typical uses of the SCSI Pass Through is to access a physical SCSI tape attached to the host.

The tape device name in Windows has the form of \\.\Tape0, which should be used to configure the

tape in the emulator.

Alternatively, if the tape device is disabled in the device manager, one can access it using Host SCSI Port,

Host SCSI Path, Host SCSI Id, Host SCSI Lun. In that case the Device option should be empty.

3.8.2 iSCSI devices

The SCSI Pass Through can be used with devices available via iSCSI. This means that the iSCSI initiator

must be configured for the device in Windows.

iSCSI target can naturally be on the same host or on a different host.

Linux iSCSI target is compatible with the emulator. It can be directly used.

Windows 2012 SCSI target can require Suppress VPD and Emulate MP1 to be enabled.

3.8.3 Non-SCSI disks

Windows converts SCSI commands to ATAPI device commands, in such a way that SCSI Pass Through

can be used to access ATAPI devices. For instance, an ATAPI CDROM drive or a USB stick can be accessed

this way.

Note that not all devices respond in a way accepted by OpenVMS or Tru64.

3.8.4 Booting from a SCSI Pass-Through device

Alpha can boot only from a device that supports the block size of 512 bytes. Most CDROM drivers have

block size of 2048. However, Alpha CDROM drives are able to switch the logical block size to 512, which

enables Alpha booting from these devices.

If your device is not capable of switching to logical block size of 512, AlphaVM will not be able to boot

from it.

3.9 Serial port configuration
Serial port configuration pane enables specification of how the port is connected. There are two types

of serial port services: virtual and physical.

Virtual ports are connected via network to a client, usually a terminal emulator. We provide a free

terminal emulator PuTTY (written by Simon Tatham), which is widely used. This is the default terminal

emulator used by AlphaVM. You can choose another terminal emulator and configure it in the serial port

configuration section.

Physical ports are connected to real serial lines of the hosting system. This mode is not supported in

AlphaVM-Basic.

Usually Alpha systems have one or two serial lines. The first serial line can be used as the serial console.

The professional version of AlphaVM additionally supports additional serial lines COM3 and COM4. Since

the guest OS does not know about these ports, it must be configured to load the drivers for COM3 and

COM4. See emuvm.nl/serialext.php for more information.

Configuration properties:

• Server – selects the way the serial line emulation is served. Currently there are two possible

servers: socket and serial. The socket server maps the serial line to a TCPIP connection.

Normally this connection has a terminal emulator (e.g. PutTTY) on the other side. The serial

server maps the emulated serial line to a real host serial line (COM port). By default, the value is

socket. The serial server is available only in the professional version of the product.

• Device specifies the host serial device (COM port) to be used when the server is serial. For

instance, COM3:. This value is ignored when the socket server. Currently the SRM emulator

ignores the SRM variable changes related to the serial line. By default, it initializes the serial line

to 9600 baud, 8 bits, No flow control, no modem control.

• Port - is the TCPIP port number used to connect to the terminal emulator. The default value is

20000 for COM1, 20001 for COM2, 20002 for COM3, and 20003 for COM4. This value is ignored

for the serial server.

• Launch - indicates whether to launch the terminal emulator automatically when the emulation

starts. The default value is true.

• Executable - The terminal emulator executable. By default, the terminal emulator is PuTTY.

PuTTY is delivered together with the AlphaVM product. You can choose another terminal

emulator here. The default value is the path to putty in the AlphaVM product location. For

instance, “C:\Program Files\AlphaVM\putty.exe”.

• Arguments - The arguments passed to the terminal emulator executable. AlphaVM provides

default putty configurations for COM1 and COM2. In this example the PuTTY configuration

emuvm_com1 is loaded. Note that the port property used here is the same as the port used by

the emuvm_com1. The default value is “-load emuvm_com1” for COM1, “-load emuvm_com2”

for COM2, etc.

• ShowLogo specifies whether the VM prints logo text on the terminal when then terminal is

connected. The default value is true. This can be disabled, which is useful in situations when the

logo transmission breaks down the communication protocol.

• Session Log Enabled controls whether the session log is enabled

• Session Log Append indicates whether the session log is open in append mode.

• Session Log Binary indicates whether the session log is open in binary mode.

• Session Log File specifies the session log file. The log file gets all the output in binary mode.

3.10 Ethernet configuration
The AlphaVM system emulates Ethernet adapter based on DEC21x4x also known as Tulip. You can add

these adapters in the “Configure” menu. The added adapters are named automatically: eth0, eth1, …

Only the last controller can be removed to preserve this naming sequence. The removal option is

available on right click.

Some Alpha systems have one or two built-in Ethernet adapters. Configurations eth0 and eth1

correspond to the built-in adapters in this case. These adapters will be present in the VM even if not

configured in the Launcher GUI.

The emulator communicates with the real Ethernet by means of WinPcap packet filter driver. The user

has to provide the information about the connection. In particular, the user has to specify which

Windows network interface will be used by the emulator.

Configuration properties:

• Type defines the emulated Ethernet controller type. Currently we have just two options

available:

o dec21040 – a 10Mbit controller also known as DE435

o dec21143 – a 100Mbit controller also known as DE500

• Address Mode specifies how the emulated station MAC address is constructed.

o user – the emulator will use the User Defined Address as the station address. Make sure

all MAC addresses are unique on your network. This is the default value.

o host – the emulator will use the MAC address of the host NIC. This setting is to be used

NICs dedicated only to AlphaVM. The Windows IP protocols have to be disabled on this

NIC, otherwise a MAC address conflict would occur. Both the host and the guest systems

would have an IP stacks using the same MAC.

o auto – the address is automatically generated. This option is convenient, because you

do not have to invent a unique address. Note however, that the address will not be

unique when two instances of the emulator process use the same host NIC. This is

because the instances do not coordinate the MAC address allocation. Use the user

defined address mode if you are configuring several instances sharing the same host

NIC. Within one instance, if several AlphaVM NICs use the same host NIC, the addresses

will be unique.

• User Defined Address specifies a MAC address to be used when Address Mode is user. If

Address Mode is not user, this field is ignored. The address is specified in a TCPDUMP format, as

a hexadecimal number. If there are several emulators on your network, make sure their

Ethernet controllers have a unique MAC addresses. Otherwise MAC address conflict occurs.

• Interface specifies the Windows network interface used to connect to the network. Normally

you would use “Local Area Connection” or “Local Area Connection 2”.If you wish to disable

network, use “No interface”, which disables mapping of the emulated Ethernet to any host

network interface.

Note that not all wireless controllers seem to work with the emulator. Please select wired

controllers.

The default value is “Local Area Connection”, if it exists; otherwise it is “No mapping”.

• RxBufSize specifies the PCAP RX buffer size in megabytes. The default is zero, which means that

the default PCAP buffer size is used.

• TxBufSize specifies the PCAP TX queue size in megabytes. The default is zero, which means that

a default queue size is used.

• DmaCache specifies whether the NIC (Tulip) caches the DMA translations. This option allows to

significantly decrease the number of DMA translations. It works if the DMA rings reside at a

constant DMA addresses, which appears to be true for the supported guest OSes. The default

value is false.

• Device shows the device name used by WinPcap. This property is read-only and is shown for

informational purposes.

• Slot specifies the PCI slot to which the adapter is plugged. The default behavior is automatic;

thus, you do not have to specify this option or know about slots. The automatic behavior covers

most cases with OpenVMS. Tru64, however, is very sensitive to changes in the hardware

configuration. When you copy your disk images from the real system, it can be required to

specify the slots in such a way to reflect the configuration of the real. The number of slots

depends on the actual emulated system. The mapping of the slots to PCI hoses and IDSELs also

depends on the system.

• TraceRX enables tracing of the packets received by the NIC.

• TraceTX enables tracing of the packets transmitted by the NIC.

• TraceFilter enables tracing of filter changes on the level of the NIC and PCAP.

• StatPeriod specifies a period used to print PCAP level statistics. The default is zero. Zero means

that the trace is disabled.

The emulator shares the same Windows network interface with other Windows programs. However, the

emulator maintains a different Ethernet address from Windows. This is necessary that the address is

different, so that packets meant for the emulator are not mixed with packets meant for Windows.

For performance reasons you may wish to use a dedicated network interface for the emulator. To

achieve this, disable all Windows protocols in Windows NIC settings. In this case Windows will not

interfere with the activity of the emulator. You may also wish to use the same Ethernet address as the

real address of the Windows NIC.

3.10.1 Communication between the host and AlphaVM

When both the host and the emulator use the same network interface, there is a problem of

communication between the host and the guest. This options works only for communication with a

remote system. However often it is desired to communicate between the host and the guest. For

instance, you may wish an X-server running on the host to connect to the guest. This section describes

how to configure network to allow for such communication.

The simplest solution is to use a dedicated host network interface for the emulator. Thus, you should

have two network interfaces in your host: one used by the host and one by the emulator. They should

both be connected to the same network. In this way packet sent between the host and the emulator go

through the real network. It works just like it normally works with a remote machine.

Another solution involves a virtual network within your system to communicate between the host and

the emulator. It can be achieved by means of Microsoft Network Bridge. The given solution is tested on

Windows 7. All you have to do is to create the bridge and to add your host NIC (e.g. “Local Area

Connection”) as a single NIC to it. You should still use your real NIC in the emulator (not the bridge).

Create the bridge as follows:

• Open Control Panel/Network and Sharing Center/Network Connections

• Select two NICs: your NIC (e.g. Local Area Connection) and any other NIC.

• Right click on selection and choose “Bridge Connections”.

• The bridge is created. You can throw the second NIC out of the bridge in the bridge properties

available via the right click.

3.11 VM logging configuration
Virtual machine produces log, which is saved to log file. The logging pane enables configuration of where

and how the log file is written. To view the log file use the Tools/VM Log menu item. When reporting a

problem with the product, please send us this log file.

Configuration properties:

• File specifies the file where the VM log is written. The default value is “vm.log”. By default, if the

path is not provided, the system uses the path of the current configuration file.

• Append specifies whether the log file is appended or truncated on every run. The default value

is false (truncate every time). Note that in append mode the file can become huge over time.

Note also that when you get a problem with the emulator, you should save the log file before

restarting of the emulation process, otherwise the log of the erroneous run will be lost. We

recommend to use non-append mode in conjunction with non-zero MaxBackups to save the log

files from the previous VM runs.

• MaxBackups specifies the number of of file backups maintained by the virtual machine. The

backups have the form of <logfile>.<version>. Newer versions have higher version numbers. For

example, when the log file is specified as c:\Test\vm.log, the emulator will create 3 backups:

c:\Test\vm.log.1, c:\Test\vm.log.2, c:\Test\vm.log.3. The default value is 3. The emulator creates

a backup each time the log is opened in non-append mode. If the maximal size of the log file is

specified, the old log is saved as a backup and the new log is opened.

• MaxSize specifies the maximal size of the log file in megabytes. When the size is reached, the

log file is closed and the new log file is created. If MaxBackups is not zero, the old log file will be

saved as a backup. Essentially this logging method creates a ring of log files. This method

ensures that the logging on the server would never exceed the size of the log file and its

backups.

• TimeMode specifies the time logging mode. By default the local time stamp is printed.

o None - no time stamp

o Counter microsecond tick counter is printed. This value can be used when a lot of

tracing is produced to minimize the time needed to obtain the timestamp.

o UTC – log UTC timestamp. The actual time format is specified by TimeFormat.

o Local – log local time stamp. The actual time format is specified by TimeFormat.

• TimeFormat specifies the format of the timestamp for UTC and local modes. The format

specification is the same as for strftime() function. Use the drop-down list to see some common

formats.

• TimeFraction specifies whether to log time fraction. Time fraction is appended in microseconds

to the time stamp in the format .NNN.

3.12 VM launching configuration
The Launch configuration pane enables specification of the virtual machine to launch and of its

properties.

Configuration properties:

• Executable specifies the VM executable. You can change the executable in order to provide an

alternative virtual machine, which can be useful when experimenting with different versions.

The default value is the main product virtual machine executable, for instance, “C:\Program

Files\AlphaVM\alphavm.exe”.

• WorkingDirectory specifies the working directory for the virtual machine. The working directory

determines where files with relative filenames are located. If this property is empty, the path of

the configuration file will be used as a default working directory. The default value is empty.

• Restart specifies whether to restart the VM if it exits. This option is used only by the EmuVMSrv

service that manages automatic startup of the VMs.

• Process Affinity specifies a CPU affinity mask to be used by the VM process. Each CPU in the

mask specifies whether the VM can run on the corresponding host CPU. This feature allows

limiting the amount of the CPU resources used by the VM. The default value is zero, which

means that the VM can run on any available CPU.

• MinWorkingSet and MaxWorkingSet specify the minimal and maximal working set limits. These

are advanced settings. Do not change them unless you are sure what you are doing. Wrong

settings can badly affect the emulator and the system performance. The default value is zero,

which means that the virtual machine sets the limits automatically. Working set limits can be

changed to tune the VM performance in case the system defaults do not work well. Working set

is the amount of physical memory used by the process, in our case the VM. Too low working set

limit can cause VM page faults on the emulated memory access, which can disturb timing of the

emulated CPU. Too high working set limits can lead to lack of resources for the host system,

which degrades the whole system performance including the VM.

• MinSystemFileCacheSize and MaxSystemFileCacheSize specify the limits for Windows file

cache. These setting are system-wide settings. The values are in megabytes. The emulator can

adjust them at startup. Note that the settings do not survive the host OS reboot. This is an

advanced setting. The default values are zero, which means that the system settings are not

changed. The recommended size for the file cache can be around 20% of the host RAM.

• VM Information fields show the currently selected virtual machine properties.

3.13 Licensing information
The licensing configuration node contains information related to licensing of the product.

Properties:

• Host is the IP address of the system running the EmuVM licensing service. When using a USB

dongle, this is normally localhost. For evaluation set the evaluation server IP provided by

EmuVM.

• Port specifies a port number used to connect to the licensing service. Use 19991 with the

evaluation license server. Use 19992 with a USB dongle server.

• User is a username used to connect to the licensing service. For evaluation, use the user name

provided by EmuVM. When using a USB dongle it is usually sys0 unless another name is

provided by EmuVM.

• Password is a password used to authenticate the user at the licensing service. When using a USB

dongle, please use default. Otherwise, use the evaluation password provided by EmuVM.

• License requirement properties are read-only. They show the amount of units required by the

current configuration of the emulator.

• License Server Information group of properties are read-only. They show the information about

the currently connected licensing server. These properties are updated when you switch to the

Licensing configuration node in the left panel. If you change the licensing information, please

select another node (for instance logging) and then back to Licensing.

3.13.1 Configuring for evaluation

The AlphaVM evaluation can be done using a remote EmuVM server. You will receive the server IP

address, port number, username and password to be used. The EmuVM evaluation server uses the port

19991.

Please make sure the outgoing port is open at your firewall and ati-virus software. Please first use ping

to check the availability of the server.

3.13.2 Configuring with USB dongle on the local machine

The dongle service is called keylok_service.exe. It is available in the \Program Files\AlphaVM directory.

The AlphaVM installer installs and starts the service. The service appears as EmuVMLicense in the

Windows Service manager. You do not have to do anything special to start the service. Configure your

emulator as follows:

• Host=localhost,

• Port=19992,

• User=sys0,

• Password=default.

3.13.3 Configuring with USB dongle on a remote machine

If you wish to run the service on a remote machine, you can do it in two ways. The simplest is just to

install AlphaVM-Pro on that machine. The installer will install and start the service. The emulator on that

machine will not be unused; it will not use any license units.

Alternatively, you can copy just the service executable keylok_service.exe to the machine where you

wish to have the dongle plugged. You will have to install and start the service as follows

keylok_service --install

keylok_service --start

Service c can be uninstalled as follows:

keylok_service --stop

keylok_service --uninstall

In either case configure the Host address of the remote license server to refer to the machine where you

have the license server and the dongle.

3.14 Notifications
AlphaVM-Pro can be configured to send email notifications for some important events. Currently it

sends notifications for licensing failures and for OpenVMS bugchecks.

The configuration is done in Notifications section:

• From – source email

• To – target email

• Subject – email subject

These parameters are used to compose a notification email. The email body is provided by AlphaVM-

Pro; it describes the event.

AlphaVM-Pro used the default email client and the default email profile to send the notification. The

email must be properly configured on the host machine. For outlook the following powershell

commands can be used to test that email notifications will work.

$outlook = new-object -comobject outlook.application

$email = $outlook.CreateItem(0)

$email.To = "target@example.com"

$email.Subject = "EmuVM notification"

$email.Body = "Event description"

$email.Send()

$outlook.Quit()

AlphaVM-Pro notifications can also be tested from the SRM console (>>> prompt) by issuing the

command

>>> test notification

Please note that AlphaVM-Pro in production mode usually runs as service. Therefore, the notifications

must be configured to work in that environment.

3.15 Configuration of multiple instances
It is possible to run several VM instances on a single host system. AlphaVM instances can be run from

the launcher GUI, command line or as a service. Each instance must have a unique configuration file. You

must take care that:

• No single configuration is launched twice

• There is no multiple use of resources private to each instance.

The following steps are needed to configure several instances

• Make a separate directory for each system configuration.

• Place the configuration file for each system in the corresponding directory.

• Place the private disk and tape images in the corresponding directory.

• Set unique MAC addresses for each network card in each configuration.

• Make sure the serial line configuration use unique ports.

• Set CPU affinities in such a way that different instances use different host CPUs. CPU affinity is a

bit mask where each bit represents one host CPU core or hyper-thread. When a bit is 1, the

corresponding core is used to run the corresponding instance of AlphaVM. The table below

contains the affinity setting examples.

• For AlphaVM-Pro: set the licensing information for each instance. The information about license

settings will be provided when you purchase the product.

In particular, take care that, if you run an instance as a service, you do not launch it from the GUI

launcher.

4 Emulator operation

4.1 Running a VM from the GUI launcher.

4.1.1 Starting the emulation

When the configuration is done, you can start the emulator by means of the Emulation menu or by the

toolbar buttons.

4.1.2 Stopping the emulation

Please do not stop the emulator by means of the user interface stop button unless it is necessary. This

corresponds to an abnormal system power failure and can cause troubles with the guest operating

system or other guest software currently running in the emulator. Instead, shutdown the guest system

and use SRM power command to "power down" the emulated system.

4.2 Running a VM from the Command Line
Sometimes it is more convenient to run the virtual machine from the command line than from the

EmuLaunch user interface.

The launcher not only starts the VM itself, but also the terminal emulators, if configured. When running

the VM from command line, the user has to connect the terminal emulators manually.

The VM is started as follows:

alphavm.exe <config-file>

Here it is assumed that alphavm.exe is either in the PATH or in your current directory. Here is a full

example of the command line:

"C:\Program Files\AlphaVM\alphavm.exe" c:\Test\foo.emu > foo.log 2>&1

Normally the configuration file is created by the Launcher. When running VM directly, the user has to

write the configuration file. Alternatively, one can modify a file created by the launcher.

To see an example of a configuration file use Tools menu/ View configuration as text.

4.3 Running a VM as a service
AlphaVM-Pro can be run in a context of a Windows service. There is a special service – EmuVMSrv. It is

installed by the installer to manage the VMs. Multiple instances can be started as a service.

There is a special EmuVMSrv configuration file “\Program Files\AlphaVM\emuvmsrv.cfg”. Each line in

this file specifies a full path to the VM configuration to be run. Usually it is a file that just contains one

line. For example:

C:\Test\foo.emu

A line can be empty. A line starting with the # character is ignored (i.e. it is a comment).

A VM configuration can be created as usually by the GUI.

Initially emuvmsrv.cfg is empty. If it is empty, the EmuVMSrv service stops. When the emuvmsrv.cfg is

changed, restart the service to take the effect. Currently the service does not automatically rescan the

configuration file.

The service log is stored in “\Windows\system32\emuvm-server.log”. This filename can be changed in

“emuvm-server.cfg”.

When you are running multiple VMs on a single Windows host, you have to consider that the instances

may have a resource conflict, if you do not take care of it. See Configuration of multiple instances for the

details.

Note that all instances running in a service and all instances running interactively have to be considered

when thinking of multiple instances. In particular, note that an instance, that runs automatically, should

not be run interactively at the same time.

The VM configuration Launch section contains a parameter called Restart. The EmuVMSrv service uses it

to check what to do if the service stops.

EmuVMSrv does not start the terminal emulators that are normally started by the GUI launcher. You

have to connect the terminal emulators manually.

5 AlphaVM Firmware
AlphaVM emulates firmware; it does not use/load a real Alpha machine firmware.

The SRM prompt commands are a subset of typical SRM commands from a real Alpha server. Here we

mention several important SRM commands and variables.

5.1 Commands

• help – list of commands

• help <cmd> - help about a specific command

• show dev – lists the devices

• show <var> - shows a variable. Examples

o show boot_defdev

o show boot*

o show *

• set <var> <value> - sets a variable. Examples

o set boot_osflags a

o set boot_osflags 0,0

• clear <var> - clear a variable

• boot [-fl <flags>] [-file <file>] [<dev>] – boot a guest OS

o <flags> are flags passed to the guest OS kernel. If not provided, BOOT_OSFLAGS are

passed. For instance -a for UNIX or 0,0 for OpenVMS

o <file> - is the kernel file used by the OS. For instance /genvmunix. If not provided and

BOOT_FILE is specified, this file is used to boot

o <dev> boot device(s), if not provided, BOOT_DEFDEV files are used.

• Ctrl-P on OpenVMS console will halts the system and bring it to the SRM prompt.

• continue – continue the halted OS

• crash – create an operator-initiated crash dump.

5.2 Variables
• BOOT_DEFDEV – The default device(s) used for booting. Example: set boot_defdev dka0

• BOOT_OSFLAGS – The boot flags passed to the booted guest system kernel. Examples

o For UNIX: set boot_osflags a

o For OpenVMS: set boot_osflags 0,0

• BOOT_FILE – The kernel file used to boot the operating system. For UNIX usually it specified the

kernel like /vmunix or /genvmunix. If empty, the default kernel us used.

• AUTO_ACTION – automatic action to be applied when the guest operating system crashes.

o HALT – AlphaVM stays in the SRM prompt

o RESTART – the OS tries to restart if possible, if not, it will boot. The automatically boot n

power-on.

o BOOT – the guest OS will reboot on crash. The OS automatically boots on power-on.

o POWER_OFF – power-off AlphaVM on a crash. This value is specific to AlphaVM; it is

introduced in AlphaVM 1.6.19. This value can be used to exit AlphaVM on

crash/bugcheck to restart the emulator from scratch. In that case the AlphaVM-Pro

service can restart AlphaVM. The OS boots automatically on power-on. This option is

useful to ensure that the emulator is cleanly started after a problem; no emulator-level

state remains uncleared from the previous boot.

• BOOTED_* variables that reflect the state of the actual/last boot attempt.

• COM* variables specifies the serial line configuration

5.3 How to Setup Automatic Booting on Power-on
Initially, when the emulator is started (powered on), it shows the firmware prompt >>> on the console.

The user can type the boot command to boot a guest OS. For automatic startup on power-on, the

following has to be done:

• Set the BOOT_DEFDEV SRM variable. Example: >>> set boot_defdev dka0

• Optionally set the BOOT_OSFLAGS SRM variable to the desired boot flags. Examples: >>> set

boot_osflags a.

• Optionally set BOOT_OSFILE to the desired boot file.

• Set the AUTO_ACTION variable to BOOT, RESTART or POWER_OFF. If HALT is set, the system

will not boot automatically.

After the OS shutdown without power-off, the emulator will stay in the SRM prompt. The SRM variables

can be modified to take effect next boot/startup.

Please also refer to 3.12 and 4.3

6 Usage example

6.1 OS installation on a new disk
This is a general sequence of installing of an OpenVMS, Tru64 or Linux on the emulated system.

Step 1: Create an empty disk by means of Tools/Make disk

Step 2: Configure the disk0 to use the just created empty disk image.

Step 3: Configure the cdrom to map to your ISO file. Alternatively, use \\.\Cdrom instead of the disk

image to use the real CD .

Step 4: Save configuration to a file, say vms83.emu.

Step 5: boot from cdrom: boot dka400

Step 6: Follow the OS installer sequence as usually. The target disk for the installation is DKA0.

Step 7: When the installation is completed, you can boot from the new system: boot dka0.

7 Migration
A real system can be replaced by the emulator software. Firstly, the emulator should be configured to

reflect the real system as close as possible. Secondly the software should be transferred to the

emulator.

file://///./Cdrom

7.1 Migration by copying disks
The simplest way of migration is by copying the real system disks to disk images and then using these

disk images to run the emulation. Thus, the whole OS, software and data are copied. The new system

behaves in the same way as the old one.

Unfortunately, this method does not always work. Currently we cannot emulate all kinds of Alpha

systems and all kinds of peripheral devices. Some OSs and applications are flexible and can run on a

different hardware configuration without changes. Others require more or less complicated

reconfiguration.

7.1.1 Copying disks using a Live Linux CD

When a system is booted from a disk, this disk cannot be modified while being copied. To avoid such

problems you can boot a Linux system form so called Live CD (for instance, Gentoo LiveCD). In this case

you get a booted Linux system that does not use any of you OpenVMS or Tru64 disks. This Linux system

can be used to copy your disks by means of the dd command. You will have to use a storage on the

network to store the resulting disk images.

When copying disks please use the whole disk devices like /dev/sda, rather than partition devices (like

/dev/sda1)

Please note that Tru64 can be very sensitive to configuration changes. When the copied disk image is

booted in the emulator it may fail due to difference in the configuration. In this case, you can boot the

generic kernel and reconfigure/rebuild your kernel as usually.

See a detailed example on emuvm.com/migrate_vms.php.

7.1.2 Migration of OpenVMS using backup /image

The usual way to migrate OpenVMS is to use backup /image copies of the disks. The following

command can be used to make such backups:

$ mount dka100: /over=id

$ backup /image/verify dka100: dka500:[000000]foo.sav/sav

You can use the command to backup your system disk.

The following commands can be used to restore disk images:

 mount dka100: /foreign

backup /image/verify dka500:[000000]foo.sav/sav dka100:

The migration process can be outlined as follows:

1. Make backup /image backups of all disks in your system and make them available via the

network.

2. Install AlphaVM and create N+1 empty disk images. Add the disk images to the emulated

system. One disk will be used for a freshly installed copy of OpenVMS. The other disks will be

used to restore your original disks. The AlphaVM disk images can be larger than the original

disks.

3. Install a fresh copy of OpenVMS on AlphaVM and configure the network to access the disk

backups.

4. Restore the disk backups from the files to the empty emulated disks.

5. Boot from the restored system disk.

It is advised that your fresh system disk is made large enough to contain any of the *.sav files (or all of

them). It this case you can restore from a local copy rather than from a DECNET remote copy. It is

possible to use TCPIP to ftp files and you do need to configure DECNET.

7.1.3 Copying disks on OpenVMS

On OpenVMS a proper disk image can be created by means of backup /physical. Please note that the

physical image has the same size as the original disk. Therefore you need to have enough storage to

store the resulting file. Please note that you can use a network path for the destination file.

7.1.4 Copying disks on Tru64

On Tru64 a proper disk image can be created by means of the dd command. Please note that the

physical image has the same size as the original disk. Therefore, you need to have enough storage to

store the resulting file. Please note that you can use a storage available via the network as the result,

for instance NFS.

7.2 Migration by reinstalling software
When it is impossible or inconvenient to copy disks, the software can be installed on the emulator in the

usual way. These are the steps to be done:

• Install the OS and its layered products.

• Install and configure the application software.

• You may need to copy data from the old system.

